DOI QR코드

DOI QR Code

액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests

  • ;
  • ;
  • 유병수 (서울대학교 건설환경공학부) ;
  • 김성렬 (서울대학교 건설환경공학부)
  • Tung, Do Van (Dept. of Civil & Environmental Eng., Seoul National Univ.) ;
  • Tran, Nghiem Xuan (Dept. of Civil & Environmental Eng., Seoul National Univ.) ;
  • Yoo, Byeong-Soo (Dept. of Civil & Environmental Eng., Seoul National Univ.) ;
  • Kim, Sung-Ryul (Dept. of Civil & Environmental Eng., Seoul National Univ.)
  • 투고 : 2020.04.26
  • 심사 : 2020.06.23
  • 발행 : 2020.06.30

초록

액상화 구성모델의 입력변수는 실내외 실험 등을 통해 지반 및 하중 조건에 적합한 값을 결정하는 것이 중요하지만, 설계 실무에서는 시험수행의 어려움 등으로 입력변수의 결정 및 해석결과의 검증이 어려웠다. 본 연구에서는 반복 직접전단시험에 대한 수치모델링을 수행하여 액상화 구성모델 중 Finn 모델과 PM4Sand 모델의 적용성을 분석하였다. 그 결과, Finn 모델은 과잉간극수압의 최대값 도달시점은 모사할 수 있었지만 항복 이후의 과잉간극수압 응답 및 응력-변형률 거동을 모사하는데 한계가 있었다. 이에 반해, PM4Sand 모델은 액상화 도달시점 및 및 액상화 이후의 응력-변형률 거동을 잘 모사할 수 있었다. 최종적으로, 설계조건에 맞는 액상화 저항전단응력비 CRR을 모사할 수 있는 액상화 모델의 입력변수 산정절차를 제안하고 PM4Sand 모델의 입력변수를 산정하는 간편식을 제안하였다.

The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.

키워드

참고문헌

  1. Alarcon-Guzman, A., J. L. Chameau, G. A. Leonards, and J. D. Frost (1989), Shear Modulus and Cyclic Strength behavior of Sands, Soils and Foundations, Vol.29, No.4, pp.105-119. https://doi.org/10.3208/sandf1972.29.4_105
  2. ASCE (American Society of Civil Engineers) (2014), Seismic design of piers and wharves. ASCE/COPRI 61-14.
  3. Bastidas, A. M. P. (2016), Ottawa F-65 sand characterization, University of California, Davis.
  4. Beaty, M.H. and Byrne, P.M. (2011), UBCSAND constitutive model version 904aR. Itasca UDM Web Site.
  5. Boulanger, R. W. and Ziotopoulou, K. (2015), PM4Sand (Version 3): A sand plasticity model for earthquake engineering applications. Center for Geotechnical Modeling Report No. UCD/CGM-15/01, Department of Civil and Environmental Engineering, University of California, Davis, Calif.
  6. Byrne, P. M. (1991), A cyclic shear-volume coupling and pore pressure model for sand, International Conferences on Recent Advances in Geotechnical Engineering and Soil Dynamics.
  7. Dafalias, Y. F. and Manzari, M. T. (2004), Simple Plasticity Sand Model Accounting for Fabric Change Effects, Journal of Engineering mechanics, Vol.130, No.6, pp.622-634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)
  8. Iai, S. (2001), Recent studies on seismic analysis and design of retaining structures.
  9. Iai, S., Matsunaga, Y., and Kameoka, T. (1990), Strain space plasticity model for cyclic mobility. Report of the Port and harbour Research Institute, 29(4).
  10. Idriss, I. M. (1999), An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. TRB Worshop on New Approaches to Liquefaction, FHWA-RD-99-165, Federal Highway Administation.
  11. Idriss, I. M. and Boulanger, R. W. (2008), Soil liquefaction during earthquakes. Earthquake Engineering Research Institute.
  12. Idriss, I. M. and Boulanger, R. W. (2010), SPT-based liquefaction triggering procedures. Rep. UCD/CGM-10, 2, 4-13.
  13. Itasca (2011), FLAC‐Fast Lagrangian Analysis of Continua, Version. 7.0.
  14. Korean Geotechnical Society (2018), Commentary on Structural Foundation Design Manual.
  15. Lee, J. S. and Noh, G. D. (2016), Evaluation of Caisson Quay Wall behavior During the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis, Journal of the Earthquake Engineering Society of Korea, Vol.20, No.6, pp.401-412. https://doi.org/10.5000/EESK.2016.20.6.401
  16. Lee, J. S., Park, T. J., Lee, M. G., and Kim, D. S. (2018), Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test, Journal of the Korean Geotechnical Society, Vol.34, No.11, pp.57-70. https://doi.org/10.7843/KGS.2018.34.11.57
  17. Liao, S. S. and Whitman, R. V. (1986), Overburden Correction Factors for SPT in Sand, Journal of Geotechnical Engineering, Vol.112, No.3, pp.373-377. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)
  18. Overseas Coastal area Development Institute of Japan (2009), Technical standards and commentaries for port and harbour facilities in Japan, Overseas Coastal Area Development Institute of Japan.
  19. Seed, H. B. and Idriss, I. M. (1971), Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics and Foundations Div.
  20. Tran, N. X., Lee, J. S., and Kim, S. R. (2017), Evaluation of Seismic Performance of Takahama Wharf using Nonlinear Effective Stress Analysis, Journal of the Korean Geotechnical Society, Vol. 33, No.4, pp.47-56. https://doi.org/10.7843/kgs.2017.33.4.47