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INTERPOLATION OF SURFACES WITH GEODESICS

Hyun Chol Lee, Jae Won Lee, and Dae Won Yoon

Abstract. In this paper, we introduce a new method to construct a para-

metric surface in terms of curves and points lying on Euclidean 3-space,

called a C0-Hermite surface interpolation. We also prove the existence of
a C0-Hermite interpolation of isoparametric surfaces with the so-called

marching scale functions, and give some examples. Finally, we construct
ruled surfaces and surfaces foliated by a circle as an isoparametric surface.

1. Introduction

A geodesic between two points on a surface is defined as the curve embedded
in the surface that connects the points with the minimal distance. Also, a
geodesic can be defined as a curve with zero geodesic curvature. The geodesic
curvature of a curve on a surface at a point is equal to the curvature of the
normal projection of the curve onto the tangent plane of the surface at the point.
It is well known that a geodesic plays an important role in various applications,
such as tent manufacturing, cutting an painting path, textile manufacturing
and fiberglass tape windings in pipe manufacturing space [1, 2].

There are some recent works to construct surfaces using geodesics: in [6]
the authors showed how to construct a general surface from a polynomial ge-
odesic and a tangent ribbon. Paluszny [5] considered a 3D polynomial curve
as a pregeodesic and constructed ruled cubic patches through pregeodesics and
bicubic patches through pairs of pregeodesices. In [4] the authors investigated
a developable surface which contains a given Bézier geodesic and studied G1-
connection of developable surfaces through abutting cubic Bézier geodesics.

On the other hand, parametric surfaces play an crucial role in the construc-
tion of different products, such as cars, ships, airplanes and shoes with basic
theories and geometric properties [7]. In this sense, the study of constructions
of a parametric surface that contain a given curve as a geodesic is an impor-
tant in Computer Aided Design (CAD) or Computer Aided Geometric Design
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(CAGD). Wang et al. [7] was the first to handle the problem of finding a surface
family possessing a given spatial curve. By utilizing the Frenet frame along a
given curve, they defined parametric surfaces associated with geodesic and de-
rived the sufficient condition on the marching scale functions given by a factor
decomposition for which the curve is an isogeodesic on a parametric surface.
After, in [3] Kasap et al. considered more general marching scale functions and
they illustrated a method by finding the exact surface pencil formulation for
some simple surfaces.

In this paper, we consider isoparametric surfaces which contains a geodesic
and construct surfaces with prescribed given geodesics and C0-Hermite data.
To do this, we define a surface interpolation associated with a spatial curve
passing through some m-points in Euclidean 3-space. Moreover, we present
isoparametric surfaces in terms of polynomial marching scale functions and
give some examples.

The outline of the paper is organized as follows: In Section 2 we give some
geometric concepts for isoparametric surfaces in Euclidean 3-space E3. In Sec-
tion 3 we introduce a C0-Hermite surface interpolation to construct an isopara-
metric surface in terms of curves and points lying on E3, and prove the existence
of a C0-Hermite interpolation of isoparametric surfaces (see Theorem 3.1). As
a result, we give some examples for such surfaces. In the last section, we clas-
sify isoparametric ruled surfaces (see Lemma 4.1) and provide an example of
the surface passing through the two points lying on E3.

2. Preliminaries

Let C be a spatial parametric curve with arc-length s in Euclidean 3-space
E3. Consider the orthonormal frame field {t,n,b} along the curve C(s) satis-
fying the relations:

d

ds

 t(s)
n(s)
b(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 t(s)
n(s)
b(s)

 ,

where κ(s) and τ(s) are the curvature and the torsion of the curve C(s), re-
spectively. Using the curve and the frame field, we can define the parametric
surface Σ as

(2.1)
Σ(s, t) = C(s) + (α(s, t) β(s, t) γ(s, t))

 t(s)
n(s)
b(s)

 ,

0 ≤ s ≤ p, 0 ≤ t ≤ q

where α(s, t), β(s, t) and γ(s, t) are smooth functions.
If the parameter t is seen as the time, α(s, t), β(s, t) and γ(s, t) can be viewed

as directed marching distances of a point unit at the time t in the direction
t(s), n(s) and b(s), respectively. In particular, the values of α(s, t), β(s, t) and
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γ(s, t) indicate the extension-like, flexion-like and retortion-like effects, respec-
tively, by the point unit through the time t, starting from C(s). Sometimes,
α(s, t), β(s, t) and γ(s, t) are said to be the marching-scale functions in the
directions t(s), n(s) and b(s), respectively.

Definition. A curve C(s) on a parametric surface Σ(s, t) defined by (2.1) is
said to be an isoparametric curve if there exists a time t0 such that C(s) =
Σ(s, t0).

Definition. A curve C(s) on a parametric surface Σ(s, t) defined by (2.1) is
called isogeodesic of the surface Σ(s, t) if it is both an isoparametric curve and
a geodesic on the surface Σ(s, t).

Lemma 2.1 ([7]). A curve C(s) on a parametric surface Σ(s, t) in (2.1) is an
isogeodesic if and only if the following conditions are satisfied

(2.2)

α(s, t0) = β(s, t0) = γ(s, t0) = 0,

∂β(s, t0)

∂s

∂γ(s, t0)

∂t
− ∂γ(s, t0)

∂s

∂β(s, t0)

∂t
= 0,(

1 +
∂α(s, t0)

∂s

)
∂γ(s, t0)

∂t
− ∂γ(s, t0)

∂s

∂α(s, t0)

∂t
6= 0,(

1 +
∂α(s, t0)

∂s

)
∂β(s, t0)

∂t
− ∂β(s, t0)

∂s

∂α(s, t0)

∂t
= 0.

For the better analysis of a parametric surface with an isogeodesic, we now
consider the marching-scale functions α(s, t), β(s, t) and γ(s, t) are expressed
by as two factors, that is,

(2.3)

α(s, t) = f(s)F (t),

β(s, t) = g(s)G(t),

γ(s, t) = h(s)H(t),

where f(s), g(s), h(s), F (t), G(t) and H(t) are smooth functions.
In this case, Lemma 2.3 can be rewritten as the following statement:

Corollary 2.2. If the marching-scale functions are chosen as in (2.3), the
necessary and sufficient condition for the curve C(s) to be an isogeodesic on a
parametric surface Σ(s, t) is

(2.4)

F (t0) = G(t0) = H(t0) = 0,

dG(t0)

dt
= 0 or g(s) = 0,

dH(t0)

dt
= constant 6= 0 and h(s) 6= 0.
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In particular, take f(s) = g(s) = h(s) = 1 and consider F (t), G(t) and H(t)
as polynomials of the forms;

F (t) =

n∑
i=1

ai(t− t0)i,

G(t) =

n∑
i=2

bi(t− t0)i,(2.5)

H(t) =

n∑
i=1

ci(t− t0)i, c1 6= 0,

respectively, where ai, bi, ci are constant. Then the polynomials F (t), G(t) and
H(t) in (2.5) satisfy the isogeodesic condition (2.4).

3. Surface interpolations and examples

In this section, we construct an isogeodesic surface passing through finite
control points lying on E3.

Now, we give a definition for surface interpolations passing through some
control points on E3.

Definition. Let P1, P2, . . . , Pm be different points on E3 and Σ : D ⊂ R2 → E3

be a parametric surface given by (2.1). For some different points (si, ti) ∈
D (i = 1, . . . ,m), we can construct the surface Σ(s, t) such that Σ(si, ti) =
Pi. It is called a surface interpolation associated with the given curve C(s)
passing through m-control points Pi (i = 1, . . . ,m), simply, C0-Hermite surface
interpolation. In particular, {P1, P2, . . . , Pm} is called C0-Hermite data.

Polynomials F (t), G(t) and H(t) with degree n in (2.5) have n, n− 1 and n
degrees of freedom in terms of coefficients ai, bi and ci, respectively. For the
case n ≥ m+ 1, we can obtain various parametric surfaces passing through the
given m-control points. In particular, if n = m+ 1, then

(3.1)

F (t) =
m+1∑
i=1

ai(t− t0)i,

G(t) =

m+1∑
i=2

bi(t− t0)i,

H(t) =

m+1∑
i=1

ci(t− t0)i, c1 6= 0,

have 3m + 2 degrees of freedom. In this case, there are two extra degrees of
freedom. To determine a unique parametric surface, we may assume am+1 = 0
and cm+1 = 0.
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Now, we consider an isogeodesic surface parametrization

(3.2)
Σ(s, t) = C(s) + (F (t) G(t) H(t))

 t(s)
n(s)
b(s)

 ,

0 ≤ s ≤ p, 0 ≤ t ≤ q

with the marching-scale functions (3.1).

Theorem 3.1. Let P1, P2, . . . , Pm be different points on a parametric surface
Σ(s, t) given in (3.2). For Σ(si, ti) = Pi, i = 1, . . . ,m, there exists a unique
C0-Hermite surface interpolation such that the marching-scale functions are
given by

(3.3)

F (t) =

m∑
i=1

ai(t− t0)i,

G(t) =

m+1∑
i=2

bi(t− t0)i,

H(t) =

m∑
i=1

ci(t− t0)i, c1 6= 0,

where ai, bi, ci are constant.

Proof. We define m-points by:

Σ(si, ti) = Pi for 0 ≤ t0 < t1 < t2 < · · · < tm ≤ q.

Then, Σ(si, ti) = Pi = C(si) + F (ti)t(si) + G(ti)n(si) + H(ti)b(si) implies

(3.4)

F (ti) = 〈Pi − C(si), t(si)〉,
G(ti) = 〈Pi − C(si), n(si)〉,
H(ti) = 〈Pi − C(si), b(si)〉,

where 〈 , 〉 denotes the usual inner product in E3. We put

(3.5) F (ti) = di1, G(ti) = di2, H(ti) = di3,

where di1, di2 and di3 are constant.
From (3.1), we have

(3.6)

F (ti) = a1(ti − t0) + a2(ti − t0)2 + · · ·+ am(ti − t0)m = di1,

G(ti) = b2(ti − t0)2 + b3(ti − t0) + · · ·+ bm+1(ti − t0)m+1 = di2,

H(ti) = c1(ti − t0) + c2(ti − t0)2 + · · ·+ cm(ti − t0)m = di3,
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equivalently,

(3.7)


t̃1 t̃21 · · · t̃m1
t̃2 t̃22 · · · t̃m2
...

...
. . .

...

t̃m t̃2m · · · t̃mm




a1
a2
...
am

 =


d11
d21
...

dm1

 ,


t̃21 t̃31 · · · t̃m+1

1

t̃22 t̃32 · · · t̃m+1
2

...
...

. . .
...

t̃2m t̃3m · · · t̃m+1
m




b1
b2
...
bm

 =


d12
d22
...

dm2

 ,


t̃1 t̃21 · · · t̃m1
t̃2 t̃22 · · · t̃m2
...

...
. . .

...

t̃m t̃2m · · · t̃mm




c1
c2
...
cm

 =


d13
d23
...

dm3

 .

Let

M1 =


t̃1 t̃21 · · · t̃m1
t̃2 t̃22 · · · t̃m2
...

...
. . .

...

t̃m t̃2m · · · t̃mm

 , M2 =


t̃21 t̃31 · · · t̃m+1

1

t̃22 t̃32 · · · t̃m+1
2

...
...

. . .
...

t̃2m t̃3m · · · t̃m+1
m

 ,

where t̃i = ti − t0 for i = 1, . . . ,m. Then we have

det(M1) = (−1)
m(m−1)

2

m∏
i=1

(ti − t0)
∏

1≤i<j≤m

(ti − tj),

det(M2) = (−1)
m(m−1)

2

m∏
i=1

(ti − t0)2
∏

1≤i<j≤m

(ti − tj).

Since ti and tj are non-zero and distinct each other, for 1 ≤ i < j ≤ m, we
get det(M1) 6= 0 and det(M2) 6= 0, that is, a1, a2, . . . , am, b2, b3, . . . , bm+1 and
c1, c2, . . . , cm have unique solutions. Thus, there exists a uniquely C0-Hermite
surface interpolation with the C0-Hermite data {P1, P2, . . . , Pm} . �

Using points with known sample points, we will construct isogeodesic sur-
faces with given curves. First, we solve an isogeodesic surface passing through
one point. Next, we observe the change of the isogeodesic surface passing
through the additional points. Also, for the isogeodesic surface passing through
the given points, we observe the change of the isogeodesic surface by moving
the point.

Example 3.2. Consider a circular helix parametrized by

C(s) = (

√
2

2
cos s,

√
2

2
sin s,

√
2

2
s), 0 ≤ s ≤ 2π.
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By a direct computation, we have

t(s) = (−
√

2

2
sin s,

√
2

2
cos s,

√
2

2
),

n(s) = (− cos s,− sin s, 0),

b(s) = (

√
2

2
sin s,−

√
2

2
cos s,

√
2

2
),

κ(s) =

√
2

2
, τ(s) =

√
2

2
.

For P1(3, 2, 1), the point P1 lies on the isogeodesic surface pencil given by
(3.2). If we take

F (t) = a1t, G(t) = b2t
2, H(t) = c1t,

then there is only one isogeodesic surface passing the point P1. For the con-
venience of calculations, take s1 = 0 and t1 = 1, i.e., Σ(0, 1) = P1(3, 2, 1). We
obtain the equations:

−b2 +

√
2

2
= 3,

√
2

2
a1 −

√
2

2
c1 = 2,

√
2

2
a1 +

√
2

2
c1 = 1,

which imply

a1 =
3
√

2

2
, b2 = −3 +

√
2

2
, c1 = −

√
2

2
.

Thus, we can construct the isogeodesic surface passing the one point P1(3, 2, 1)
given by

Σ(s, t) = C(s) + (F (t) G(t) H(t))

 t(s)
n(s)
b(s)


0 ≤ s ≤ p, 0 ≤ t ≤ q

consisting of

C(s) = (

√
2

2
cos s,

√
2

2
sin s,

√
2

2
s),

F (t) =
3
√

2

2
,

G(t) = (−3 +

√
2

2
)t2,

H(t) = −
√

2

2
t.

The surface is shown in Figure 1(a).
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(a) (b)

Figure 1. (a) the isogeodesic surface passing through the
point P1(3, 2, 1) in Example 3.2; (b) the isogeodesic sur-
face given by Example 3.2 passing through additional point
P2(5,−2, 3) in Example 3.3. The red curve is a helix that is
a geodesic of the surface and the blue curves passing through
P1 and P2 are helices, respectively.

Example 3.3. Let the isogeodesic surface of Example 3.2 pass through the
additional point P2(5,−2, 3). For the convenience of calculations, taking s2 = 0
and t2 = 2, we have Σ(0, 2) = P2 and obtain the system of linear equations as
follows:

(3.8)

−b2 − b3 +

√
2

2
= 3,

√
2

2
a1 +

√
2

2
a2 −

√
2

2
c1 −

√
2

2
c2 = 2,

√
2

2
a1 +

√
2

2
a2 +

√
2

2
c1 +

√
2

2
c2 = 1,

−4b2 − 8b3 +

√
2

2
= 5,

√
2a1 + 2

√
2a2 −

√
2c1 − 2

√
2c2 = −2,

√
2a1 + 2

√
2a2 +

√
2c1 + 2

√
2c2 = 3.

From (3.8), we obtain

a1 =
11
√

2

4
, a2 = −5

√
2

4
,

b2 = −19

4
+

7
√

2

8
, b3 =

7

4
− 3
√

2

8
,

c1 = −9
√

2

4
, c2 =

7
√

2

4
.
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Thus the isogeodesic surface passing the two points P1(3, 2, 1) and P2(5,−2, 3)
is uniquely given by

Σ(s, t) = C(s) + (F (t) G(t) H(t))

 t(s)
n(s)
b(s)


0 ≤ s ≤ p, 0 ≤ t ≤ q,

consisting of

C(s) = (

√
2

2
cos s,

√
2

2
sin s,

√
2

2
s),

F (t) =
11
√

2

4
t− 5

√
2

4
t2,

G(t) = (−19

4
+

7
√

2

8
)t2 + (

7

4
− 3
√

2

8
)t3,

H(t) = −9
√

2

4
t+

7
√

2

4
t2.

The surface is shown in Figure 1(b).

Let an isogeodesic C(s) of a parametric surface Σ(s, t) given by (3.2) be a

circular helix. For a fixed value t̃0, we put C̃(s) = Σ(s, t̃0). That is, C̃(s) is
an isoparametric curve of the isogeodesic surface Σ(s, t). To find the curvature

and the torsion of C̃(s), we have

C̃ ′(s) = C ′(s) + F (t̃0)t′(s) +G(t̃0)n′(s) +G(t̃0)b′(s)

= (1− a G(t̃0))t(s) + (a F (t̃0)− b H(t̃0))n(s) + b G(t̃0)b(s).

Since F (t̃0), G(t̃0) and H(t̃0) are constant for s only, C̃ ′ is rewritten as C̃ ′(s) =
c1t(s) + c2n(s) + c3b(s) for some constants c1, c2 and c3. In a similar way, we
have

C̃ ′′(s) = d1t(s) + d2n(s) + d3b(s),

C̃ ′′′(s) = e1t(s) + e2n(s) + e3b(s)

for some constants di and ei (i = 1, 2, 3).

Thus, the curvature and the torsion of C̃ are constant, and hence the isopara-
metric curve C̃ of the isogeodesic surface Σ(s, t) is a circular helix.

Thus, we have:

Theorem 3.4. Let C(s) be a circular helix on an isogeodesic parametric surface

Σ(s, t) given by (3.2). Then, for a fixed value t̃0, a curve C̃(s) = Σ(s, t̃0) on
the surface Σ(s, t) is also a circular helix.

Next, we consider a circle C(s) = (cos s, sin s, 0) as a geodesic. It is easy to
show that

t(s) = (− sin s, cos s, 0),
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n(s) = (− cos s,− sin s, 0),

b(s) = (0, 0, 1).

Thus, an isogeodesic parametric surface Σ(s, t) given by (3.2) is parametrized
by

(3.9) Σ(s, t)=((1−G(t)) cos s−F (t) sin s, (1−G(t)) sin s+F (t) cos s,H(t)) .

Consider the isoparameter curve C̃(s) = Σ(s, t̃0) at t = t̃0 on Σ(s, t). Let

X1 = (1−G(t̃0)) cos s− F (t̃0) sin s,

X2 = (1−G(t̃0)) sin s+ F (t̃0) cos s,

X3 = H(t̃0).

Then we obtain
X2

1 +X2
2 = (1−G(t̃0))2 + F (t̃0)2.

Since F (t̃0), G(t̃0) and H(t̃0) are constant, the isoparameter curve C̃(s) is a

circle with center (0, 0, H(t̃0)) and radius
√

(1−G(t̃0))2 + F (t̃0)2 at t = t̃0.
Thus, we have:

Theorem 3.5. The isogeodesic parametric surface (3.9) with the circle C(s)

as a geodesic is a surface foliated by the circle C̃(s).
In particular, if F (t) = 0, the isogeodesic parametric surface Σ(s, t) is a

surface of revolution with a profile curve R(t) = (1−G(t), 0, H(t)).

Example 3.6. Let C(s) = (cos s, sin s, 0) be a curve, where 0 ≤ s ≤ 2π.
For P1(1, 2, 1), the point P1 lies on an isogeodesic parametric surface given
by (3.2). If we take F (t) = u1t, G(t) = v2t

2 and H(t) = w1t, then there is
the only one isogeodesic parametric surface passing through the point P1. For
the convenience of calculations, if we take s1 = 0 and t1 = 1, then we have
Σ(0, 1) = P1(1, 2, 1) and the equations:

−b2 + 1 = 1,

a1 = 2,

c1 = 1.

That is,
a1 = 2, b2 = 0, c1 = 1.

Thus, the isogeodesic parametric surface passing through the one point
P1(1, 2, 1) is given by

Σ(s, t) = C(s) + (F (t) G(t) H(t))

 t(s)
n(s)
b(s)


0 ≤ s ≤ p, 0 ≤ t ≤ q

consisting of C(s) = (cos s, sin s, 0), F (t) = 2t, G(t) = 0 and H(t) = t (see
Figure 2(a)).



INTERPOLATION OF SURFACES WITH GEODESICS 967

(a) (b)

Figure 2. (a) the isogeodesic surface passing through the
point P1(1, 2, 1) in Example 3.6; (b) the isogeodesic surface
of Example 3.6 passing through additional points P2(1, 1, 2)
and P3(2, 1, 3) in Example 3.7. The red curve is a circle that
is a geodesic of the surface and the blue curves passing through
P1, P2 and P3 are circles, respectively.

Example 3.7. Let the isogeodesic surface of Example 3.6 pass through the
additional points P2(1, 1, 2) and P3(2, 1, 3). For the convenience of calculations,
choose s2 = 0, t2 = 2, s3 = 0, t3 = 3. Then, Σ(0, 2) = P2 and Σ(0, 3) = P3.
Moreover, we obtain the following system of linear equations:

−b2 − b3 − b4 + 1 = 1,

a1 + a2 + a3 + a3 = 2,

c1 + c2 + c3 = 1,

−4b2 − 8b3 − 16b4 + 1 = 1,

2a1 + 4a2 + 8a3 = 1,

2c1 + 4c2 + 8c3 = 2,

−9b2 − 27b3 − 81b4 + 1 = 2,

3a1 + 9a2 + 27a− 3 = 1,

3c1 + 9c2 + 27c3 = 3,

and its solutions become

a1 =
29

6
, a2 = −7

2
, a3 =

2

3
,

b2 = −1

9
, b3 =

1

6
, b4 = − 1

18
,

c1 = 1, c2 = 0, c3 = 0.
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Therefore, the surface foliated by the circle C̃(s) is expressed as

Σ(s, t) = C(s) + (F (t) G(t) H(t))

 t(s)
n(s)
b(s)

 ,

0 ≤ s ≤ p, 0 ≤ t ≤ q
consisting of

C(s) = (cos s, sin s, 0),

F (t) =
29

6
t+−7

2
t2 +

2

3
t3,

G(t) = −1

9
t2 +

1

6
t3 − 1

18
t4,

H(t) = t

passing through the three points P1(1, 2, 1), P2(1, 1, 2) and P3(2, 1, 3) (see Fig-
ure 2(b)).

4. Interpolation of ruled surfaces

A ruled surface in E3 is a surface that admits a parametrization

(4.10) Σ(s, t) = C(s) + tB(s),

where C is the directrix and B is a nowhere vanishing vector field (field of
generators) along the curve C.

Consider a ruled surface Σ(s, t) as an isoparametric surface. In this case,
there exists t0 such that Σ(s, t0) = C(s). Then the surface can be expressed as

Σ(s, t)− Σ(s, t0) = (t− t0)B(s).

Also, we get

(t− t0)B(s) = α(s, t)t(s) + β(s, t)n(s) + γ(s, t)b(s),

it follows that
α(s, t) = (t− t0)〈B(s), t(s)〉,
β(s, t) = (t− t0)〈B(s),n(s)〉,
γ(s, t) = (t− t0)〈B(s),b(s)〉.

By applying isogeodesic conditions (2.4), we get β(s, t) = 0 and 〈B(s),b(s)〉 6=
0. Thus, for some real valued functions φ(s) and ψ(s), we can write

(4.11) B(s) = φ(s)t(s) + ψ(s)b(s),

where ψ(s) 6= 0 for all s ∈ [0, p].
Thus, we have the following result:

Lemma 4.1. A ruled surface with a geodesic directrix C(s) in E3 is parametr-
ized as the form:

(4.12)
Σ(s, t) = C(s) + t (φ(s)t(s) + ψ(s)b(s))

0 ≤ s ≤ p, 0 ≤ t ≤ q
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Figure 3. Ruled surface passing through the two points P1

and P2 in Example 4.4.

for some smooth functions φ and ψ with ψ(s) 6= 0 on s ∈ [0, p].

Proposition 4.2. For any point P in the given ruled surface (4.12), the nec-
essary condition for the existence of C0-Hermite surface interpolation is

(4.13) 〈P − C(s),n(s)〉 = 0.

Proof. Let P be a point on the ruled surface, that is, P = Σ(s, t). (4.12) implies

〈Σ(s, t)− C(s),n(s)〉 = 0.

Thus, (4.13) is obtained. �

Remark 4.3. When s0 is fixed, Σ(s0, t) = C(s0) + t(φ(s0)t(s0) + ψ(s0)b(s0))
and C(s0) are linear dependent for 0 ≤ t ≤ q. Therefore, it does not make sense
to choose a C0-Hermite data in the same line generated by B for a C0-Hermite
surface interpolation.

Example 4.4. Let C(s) = (
√
2
2 cos s,

√
2
2 sin s,

√
2
2 s) be a curve, where 0 ≤ s ≤

2π. Calculating the Frenet frame of C(s), we have

t(s) = (−
√

2

2
sin s,

√
2

2
cos s,

√
2

2
),

n(s) = (− cos s,− sin s, 0),

b(s) = (

√
2

2
sin s,−

√
2

2
cos s,

√
2

2
).

For P1(
√
2
2 , 2, 2) and P2(

√
2
2 , 2, 5), P1 and P2 lies on an isogeodesic parametric

surface given by (4.12). We may assume that φ(s) = a0 + a1s and ψ(s) = b0 +
b1s. For the convenience of calculations, take s1 = 0, t1 = 1, s2 = 2π and t2 = 1.

Then, we get Σ(0, 1) = P1(
√
2
2 , 2, 1) and Σ(2π, 1) = P2(

√
2
2 , 2, 5). Since C(0) =
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(
√
2
2 , 0, 0), n(0) = (−1, 0, 0), C(2π) = (

√
2
2 , 0,

√
2π) and n(2π) = (−1, 0, 0),

there exists the only one ruled surface (4.12) satisfying (4.13), passing through
the mutually distinct points P1 and P2. In fact, we obtain the equations:

a0 = 2
√

2,

a0 + 2πa1 =
7
√

2

2
− π,

b0 = 0,

b0 + 2πb1 =
3
√

2

2
− π.

That is,

a0 = 2
√

2, a1 =
3
√

2− 2π

4π
, b0 = 0, b1 =

3
√

2− 2π

4π
.

Thus, the ruled surface passing through P1(
√
2
2 , 2, 2) and P2(

√
2
2 , 2, 5) is given

by

Σ(s, t) =C(s) + t (φ(s)t(s) + ψ(s)b(s))

0 ≤ s ≤ 2π, 0 ≤ t ≤ 1,

consisting of (see Figure 3)

C(s) = (

√
2

2
cos s,

√
2

2
sin s,

√
2

2
s),

φ(s) = 2
√

2 +
3
√

2− 2π

4π
s,

ψ(s) =
3
√

2− 2π

4π
s.
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