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PROPERTIES OF OPERATOR MATRICES

Il Ju An, Eungil Ko, and Ji Eun Lee

Abstract. Let S be the collection of the operator matrices
(
A C
Z B

)
where

the range of C is closed. In this paper, we study the properties of op-
erator matrices in the class S. We first explore various local spectral

relations, that is, the property (β), decomposable, and the property (C)

between the operator matrices in the class S and their component op-
erators. Moreover, we investigate Weyl and Browder type spectra of

operator matrices in the class S, and as some applications, we provide

the conditions for such operator matrices to satisfy a-Weyl’s theorem and
a-Browder’s theorem, respectively.

1. Introduction

LetH be an infinite dimensional separable Hilbert space and let L(H) denote
the algebra of bounded linear operators on H. If T ∈ L(H), we shall write
N(T ) and R(T ) for the null space and the range of T , respectively. Also, let
α(T ) := dimN(T ), β(T ) := dimN(T ∗), σ(T ), σp(T ), σa(T ), and σs(T ) denote
the spectrum, the point spectrum, the approximate point spectrum, and the
surjective spectrum of T , respectively. For T ∈ L(H), the smallest nonnegative
integer p such that N(T p) = N(T p+1) is called the ascent of T and denoted
by p(T ). If no such integer exists, we set p(T ) =∞. The smallest nonnegative
integer q such that R(T q) = R(T q+1) is called the descent of T and denoted by
q(T ). If no such integer exists, we set q(T ) =∞.

Many authors have studied invertibility, perturbations of spectra, etc. for
upper triangular operator matrices. In particular, C. Benhida, E. H. Zerouali,
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and H. Zguitti ([3], (2005)) studied spectra of upper triangular operator matri-
ces. In 2013, the authors ([17]) studied the local spectral properties of complex
symmetric (upper triangular) operator matrices. The Weyl’s theorem for up-
per triangular operator matrices has been studied by many authors (see [2],
[9], [10], [14], [21], [20]).

The study of operator matrices has been developed from the following fact;
if H is a complex Hilbert space and we decompose H as a direct sum of two
subspaces H1 and H2, each bounded linear operator T can be expressed as the
operator matrix form

T =

(
A C
Z B

)
with respect to the space of decomposition, where A,B,C,Z are operators
from Hi into Hj for i, j = 1, 2. Recently, D. S. Cvetkvic-Ilic has studied the
existence of some component Z of the operator matrix T and the problem of
completion of T ([8]). Our goal is to find various connections between T and
its components. As some applications of these results, we next consider the
structure of T . First of all, we begin with the following notation.

Notation 1.1. Throughout this paper, we denote the collection S as follows:

(1) S =
{(

A C
Z B

)
: H⊕K → H⊕K | R(C) is closed

}
.

For example, if C is a semi-Fredholm operator or semi-regular, i.e., N(C) ⊂
∩n∈NCn(H) and R(C) is closed, then the operator matrices (A C

Z B ) are in the
class S. For another example, if for given x ∈ H there exist c > 0 and a
y ∈ H such that (i) Cx = Cy and (ii) ‖y‖ ≤ c‖Cx‖, then R(C) is closed from
[12, Corollary 2]. Hence the operator matrices (A C

Z B ) are in the class S.

Lemma 1.2 ([2]). If M = (A C
Z B ) ∈ S, then M has the following matrix

representation;

(2) M =

A1 0 0
A2 0 C1

Z B1 B2


which maps from H⊕N(C)⊕N(C)

⊥
to R(C)⊥⊕R(C)⊕K where C1 = C|N(C)⊥ ,

A1 = PR(C)⊥A|H, A2 = PR(C)A|H, B1 denotes a mapping B from N(C) into

K, B2 denotes a mapping B from N(C)
⊥

into K, PR(C)⊥ denotes the projection

of H onto R(C)⊥, and PR(C) denotes the projection of H onto R(C).

In this paper, we study the class S the collection of the operator matrices
(A C
Z B ) where R(C) is closed. In Section 3, we explore several local spectral

relations, i.e., the property (β), decomposable, and the property (C) between
the 2 × 2, not necessarily upper triangular, operator matrices in the class S
and their component operators. In particular, in Section 4, we study the Weyl
spectrum and the Browder essential approximate point spectrum for operator
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matrices M ∈ S. In Section 5, we give the conditions for such operator matrices
to satisfy a-Weyl’s theorem and a-Browder’s theorem, respectively.

2. Preliminaries

An operator T ∈ L(H) is said to have the single-valued extension property
(or SVEP) if for every open subset G of C and any H-valued analytic function
f on G such that (T − λ)f(λ) ≡ 0 on G, we have f(λ) ≡ 0 on G. For an
operator T ∈ L(H) and for a vector x ∈ H, the local resolvent set ρT (x) of
T at x is defined as the union of every open subset G of C on which there is
an analytic function f : G → H such that (T − λ)f(λ) ≡ x on G. The local
spectrum of T at x is given by σT (x) = C \ ρT (x). We define the local spectral
subspace of an operator T ∈ L(H) by HT (F ) = {x ∈ H : σT (x) ⊂ F} for a
subset F of C. An operator T ∈ L(H) is said to have Dunford’s property (C) if
HT (F ) is closed for each closed subset F of C. An operator T ∈ L(H) is said to
have Bishop’s property (β) if for every open subset G of C and every sequence
{fn} of H-valued analytic functions on G such that (T − λ)fn(λ) converges
uniformly to 0 in norm on compact subsets of G, we get that fn(λ) converges
uniformly to 0 in norm on compact subsets of G. An operator T ∈ L(H) is said
to be decomposable if for every open cover {U, V } of C there are T -invariant
subspaces X and Y such that

H = X + Y, σ(T |X ) ⊂ U, and σ(T |Y) ⊂ V .

It is well known that

Bishop’s property (β)⇒ Dunford’s property (C)⇒ SVEP.

Any of the converse implications does not hold, in general (see [19] for more
details). Since decomposability or the property (β) provides a partial solution
to the invariant subspace (see [11]), it is worth to research decomposability (or
the property (β)). For example, M. Putinar [24] showed that every hyponormal
operator (i.e., T ∗T ≥ TT ∗) has the property (β) and such an operator with
thick spectrum has a nontrivial invariant subspace, a result due to S. Brown
(see [4]).

An operator T ∈ L(H) is called upper semi-Fredholm if it has closed range
and finite dimensional null space and is called lower semi-Fredholm if it has
closed range and its range has finite co-dimension. If T ∈ L(H) is either upper
or lower semi-Fredholm, then T is called semi-Fredholm, and index of a semi-
Fredholm operator T ∈ L(H) is defined by

ind(T ) := α(T )− β(T ).

If both α(T ) and β(T ) are finite, then T is called Fredholm. An operator
T ∈ L(H) is called Weyl if it is Fredholm of index zero and Browder if it is
Fredholm of finite ascent and descent, respectively. The left essential spectrum
σSF+(T ), the right essential spectrum σSF−(T ), the essential spectrum σe(T ),
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the Weyl spectrum σw(T ), and the Browder spectrum σb(T ) of T ∈ L(H) are
defined by

σSF+(T ) := {λ ∈ C : T − λ is not upper semi-Fredholm};
σSF−(T ) := {λ ∈ C : T − λ is not lower semi-Fredholm};

σe(T ) := {λ ∈ C : T − λ is not Fredholm};
σw(T ) := {λ ∈ C : T − λ is not Weyl};
σb(T ) := {λ ∈ C : T − λ is not Browder}.

Evidently, we get the next inclusions

σSF+(T ) ∪ σSF−(T ) = σe(T ) ⊆ σw(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ),

where we write acc σ(T ) for the set of all accumulation points of σ(T ).
Let iso σ(T ) be the set of all isolated points of σ(T ). We write π00(T ) :=

{λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞ }, and p00(T ) := σ(T ) \ σb(T ). We say
that Weyl’s theorem holds for T ∈ L(H) if σ(T ) \ σw(T ) = π00(T ), and that
Browder’s theorem holds for T ∈ L(H) if σ(T ) \ σw(T ) = p00(T ). We recall
the definitions of Weyl essential approximate point spectrum σea(T ) and the
Browder essential approximate point spectrum σab(T ) given by

σea(T ) :=
⋂
{σa(T +K) : K ∈ K(H)},

σab(T ) :=
⋂
{σa(T +K) : TK = KT and K ∈ K(H)}.

We say that a-Weyl’s theorem holds for T if σa(T ) \ σea(T ) = πa00(T ) and that
a-Browder’s theorem holds for T if σa(T ) \ σea(T ) = pa00(T ), where πa00(T ) :=
{λ ∈ iso σa(T ) : 0 < α(T −λ) <∞} and pa00(T ) := σa(T ) \σab(T ). It is known
that

a-Weyl’s theorem =⇒ a-Browder’s theorem =⇒ Browder’s theorem,

a-Weyl’s theorem =⇒Weyl’s theorem =⇒ Browder’s theorem.

3. Local spectral properties

Let M = (A C
Z B ) be an operator matrix in the class S. Since R(C) is closed,

C1 = C|N(C)⊥ : N(C)
⊥ → R(C) is invertible. Given λ ∈ C, using the repre-

sentation of Lemma 1.2, we write M − λ as follows;

M − λ =

A1 − λ 0 0
A2 − λ 0 C1

Z B1 − λ B2 − λ


=

0 I 0
0 0 I
I 0 (B2 − λ)C−1

1

B1 − λ 4λ 0
0 A1 − λ 0
0 0 C1

 0 I 0
I 0 0

C−1
1 (A2 − λ) 0 I

,(3)

where A1 − λ = PR(C)⊥(A − λ)|H, A2 − λ = PR(C)(A − λ)|H, B1 − λ =

(B − λ)|N(C), B2 − λ = (B − λ)|N(C)⊥ and 4λ = Z − (B2 − λ)C−1
1 (A2 − λ)
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(see [2, Page 714] for more details). Note that0 I 0
0 0 I
I 0 B2C

−1
1

 and

 0 I 0
I 0 0

C−1
1 A2 0 I

 are invertible.(4)

In this section, we study the local spectral properties of the operator matrices
in the class S.

In general, even though A has the property (β), A1, its projection of A,
may not have the property (β). For example, if the multiplication operator
Mϕ is normal on L2 and so it has property (β). But, the Toeplitz operator
Tϕ = P (Mϕ) on H2 may not have property (β). So we study the following
theorem with respect to A1 and B1 which have the property (β).

Theorem 3.1. Let M = (A C
Z B ) ∈ S and let A1 = PR(C)⊥A|H and B1 =

B|N(C). Then the following statements hold.
(i) If A1 and B1 have the property (β), then M has the property (β).
(ii) If 0 is not an eigenvalue of C∗, then M has the property (β) if and only

if B1 has the property (β).

Proof. (i) Suppose that A1 and B1 have the property (β). Let D be an open set
in C and let fn : D → H⊕N(C)⊕N(C)⊥ be a sequence of analytic functions
such that

(5) lim
n→∞

‖(M − λ)

fn,1(λ)
fn,2(λ)
fn,3(λ)

 ‖K = 0

for every compact set K in D, where ‖f‖K = supλ∈K ‖f(λ)‖ for an H ⊕

N(C) ⊕ N(C)⊥-valued function f(λ). Since

(
0 I 0
0 0 I
I 0 (B2−λ)C−1

1

)
is invertible, it

follows from (5) that

lim
n→∞

∥∥∥
B1 − λ 4λ 0

0 A1 − λ 0
0 0 C1

gn,1(λ)
gn,2(λ)
gn,3(λ)

∥∥∥
K

=

0
0
0

 ,

where

(
gn,1(λ)
gn,2(λ)
gn,3(λ)

)
=

(
0 I 0
I 0 0

C−1
1 (A2−λ) 0 I

)(
fn,1(λ)
fn,2(λ)
fn,3(λ)

)
. Therefore, we get that

(6)


limn→∞ ‖(B1 − λ)gn,1(λ) +4λgn,2(λ)‖K = 0,

limn→∞ ‖(A1 − λ)gn,2(λ)‖K = 0,

limn→∞ ‖C1gn,3(λ)‖K = 0.

Since C1 is invertible, it follows from (6) that limn→∞ ‖gn,3(λ)‖K = 0. More-
over, A1 and B1 have the property (β), hence limn→∞ ‖gn,2(λ)‖K = 0 and so
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limn→∞ ‖gn,1(λ)‖K = 0. Therefore

0 = lim
n→∞

∥∥∥
gn,1(λ)
gn,2(λ)
gn,3(λ)

∥∥∥
K

= lim
n→∞

∥∥∥
 0 I 0

I 0 0
C−1

1 (A2 − λ) 0 I

fn,1(λ)
fn,2(λ)
fn,3(λ)

∥∥∥
K
.

Since

(
0 I 0
I 0 0

C−1
1 (A2−λ) 0 I

)
is invertible, it follows that

lim
n→∞

∥∥∥
fn,1(λ)
fn,2(λ)
fn,3(λ)

∥∥∥
K

=

0
0
0

 .

Hence M has the property (β).
(ii) Assume that M has the property (β). Let D be an open set in C and

let hn : D → N(C) be a sequence of analytic functions such that

lim
n→∞

‖(B1 − λ)hn(λ)‖K = 0

for every compact set K in D, where ‖h‖K denotes supλ∈K ‖h(λ)‖ for an N(C)-
valued function h(λ). Then we have

lim
n→∞

‖(M − λ)(0⊕ hn(λ)⊕ 0)‖K

= lim
n→∞

∥∥∥
A1 − λ 0 0
A2 − λ 0 C1

Z B1 − λ B2 − λ

 0
hn(λ)

0

∥∥∥
K

= lim
n→∞

∥∥∥
 0

0
(B1 − λ)hn(λ)

∥∥∥
K

= 0.

Since M has the property (β), it follows that limn→∞ ‖hn(λ)‖K = 0. Hence
B1 has the property (β).

Conversely, assume that 0 is not an eigenvalue of C∗ and B1 has the property
(β). Then R(C) = H and A1 = 0. Let D be an open set in C and let
fn : D → H⊕N(C)⊕N(C)⊥ be a sequence of analytic functions such that

(7) lim
n→∞

‖(M − λ)

fn,1(λ)
fn,2(λ)
fn,3(λ)

 ‖K = 0

for every compact set K in D, where ‖f‖K = supλ∈K ‖f(λ)‖ for an H ⊕

N(C) ⊕ N(C)⊥-valued function f(λ). Since

(
0 I 0
0 0 I
I 0 (B2−λ)C−1

1

)
is invertible, it

follows from (7) that

(8) lim
n→∞

∥∥∥
B1 − λ 4λ 0

0 −λ 0
0 0 C1

gn,1(λ)
gn,2(λ)
gn,3(λ)

∥∥∥
K

=

0
0
0

 ,
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where

(
gn,1(λ)
gn,2(λ)
gn,3(λ)

)
=

(
0 I 0
I 0 0

C−1
1 (A2−λ) 0 I

)(
fn,1(λ)
fn,2(λ)
fn,3(λ)

)
. Then from (8) we have

(9)


limn→∞ ‖(B1 − λ)gn,1(λ) +4λgn,2(λ)‖K = 0,

limn→∞ ‖−λgn,2(λ)‖K = 0, and

limn→∞ ‖C1gn,3(λ)‖K = 0.

Moreover, since C1 is invertible, it follows that

lim
n→∞

‖gn,3(λ)‖K = lim
n→∞

‖gn,2(λ)‖K = 0.

Hence from (9), limn→∞ ‖(B1−λ)gn,1(λ)‖K = 0. SinceB1 has the property (β),

it follows that limn→∞ ‖gn,1(λ)‖K = 0. Since

(
0 I 0
I 0 0

C−1
1 (A2−λ) 0 I

)
is invertible,

we have

lim
n→∞

‖fn,1(λ)‖K = lim
n→∞

‖fn,2(λ)‖K = lim
n→∞

‖fn,3(λ)‖K = 0.

Hence M has the property (β). �

Recall that an operator T ∈ L(H) is normal if T ∗T = TT ∗, hyponormal if
T ∗T ≥ TT ∗, paranormal if ‖Tx‖2 ≤ ‖T 2x‖‖x‖ for all x ∈ H, and totally
paranormal if T − λI is paranormal for every λ ∈ C.

Corollary 3.2. Let M = (A C
Z B ) ∈ S and let A1 = PR(C)⊥A|H and B1 =

B|N(C). Then the following statements hold.
(i) Suppose that A1 and B1 have the property (β). If σ(M) has nonempty

interior in C, then M has a nontrivial invariant subspace.
(ii) Suppose A1 and B1 have the single-valued extension property. Then M

has the single-valued extension property. Moreover, if 0 is not an eigenvalue of
C∗, then M has the single-valued extension property if and only if B1 has the
single-valued extension property.

Proof. (i) Since A1 and B1 have the property (β), it follows from Theorem 3.1
that M has the property (β). Hence M has a nontrivial invariant subspace
from [11, Theorem 2.1].

(ii) The proof follows from a similar way of the proof of Theorem 3.1. �

Example 3.3. Let A,B, and C be defined on `2(N) by

Ax := (α1x1, α2x2, α3x3, . . .),

Bx := (β1x1, β2x2, β3x3, . . .),

Cx := (x1, 0, x2, 0, x3, 0, · · · ),
where x = (xn) ∈ `2(N) and αi, βi ∈ C for i = 1, 2, 3, . . .. Since C is bounded
below, it follows that M = (A C

Z B ) ∈ S for arbitrary Z ∈ L(`2(N)). Also,

since N(C) = {0} and R(C)⊥ = N(C∗) =
∨
k≥1{e2k}, we have that A1(x) =

PR(C)⊥A|`2(N)(x) = (0, α1x2, 0, α4x4, . . .) and B1 = 0. Then A1 and B1 are
normal. Therefore M has the property (β) from Theorem 3.1(i).
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Example 3.4. Let U be the unilateral shift given by Uen = en+1 on `2(N)
for n ∈ N. If B is hyponormal and C = U∗, then 0 is not an eigenvalue of
C∗ and B1 = B|N(C) is hyponormal. Since U∗ is surjective, it follows that

M = (A C
Z B ) ∈ S for arbitrary A and Z ∈ L(`2(N)). Moreover, since B1 has the

property (β), it follows that M has the property (β) from Theorem 3.1(ii).

Example 3.5. Let C be defined on `2(N) by

Cx := (x2, x3, x4, . . .)

for all x = (xn) ∈ `2(N), and let W be the weighted shift given by Wen =
1

n+1en+1 on `2(N) for n ∈ N with W1 = W |N(C). Then W1 has the property

(β) from [1] and 0 is not an eigenvalue of C∗. Thus (A C
Z W ) ∈ S and has the

property (β) from Theorem 3.1(ii).

In the following theorem, we investigate the decomposablity of the operator
matrix M ∈ S.

Theorem 3.6. Let M = (A C
Z B ) where R(C) and R(Z) are closed and let

A1 = PR(C)⊥A|H and B1 = B|N(C). If PR(Z∗)⊥A
∗|H and A1 have the property

(β), and B1 is decomposable, then M is decomposable. Moreover, if 0 is not
an eigenvalue of both C∗ and Z∗, then M is decomposable if and only if B1 is
decomposable.

Proof. Let R(C) and R(Z) be closed. Then M,M∗ ∈ S. Since B1 is decom-
posable, it follows that B1 and B1

∗ have the property (β). Moreover, since A1

and PR(Z∗)⊥A
∗|H have the property (β), it follows from Theorem 3.1 that M

and M∗ have the property (β). Hence M is decomposable.
On the other hand, if M is decomposable, then M and M∗ have the property

(β). Thus, by Theorem 3.1, B1 and B1
∗ have the property (β). Hence B1 is

decomposable. The converse implication holds by a similar way. �

Corollary 3.7. Let M =
(
A C
C∗ B

)
where R(C) is closed and A is self-adjoint, let

A1 = PR(C)⊥A|H have the property (β) and let B1 = B|N(C) be decomposable.
Then M is decomposable.

Proof. Since R(C) is closed, M and M∗ are in the class S. Thus M and M∗

have the property (β), so this implies that M is decomposable. �

Corollary 3.8. Let M = (A C
Z B ). If B1 = B|N(C) is normal or compact, and

C and Z are surjective, then M ∈ S and is decomposable.

Proof. Let B1 be normal or compact. Then B1 is decomposable from [19].
Since C and Z are surjective, these have closed range and so M ∈ S. The
result follows from Theorem 3.6. �

Example 3.9. Let M =
(
A U
U∗ B

)
on `2(N) ⊕ `2(N) where U is the unilateral

shift given by Uen = en+1 for n ∈ N and B1 = B|N(U) is a zero operator. Then
B1 is normal and so B1 is decomposable. Since R(U) and R(U∗) are closed,
M is decomposable from Theorem 3.8.
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Next, we focus on the Dunford property (C) of the operator matrix M ∈ S.
We need the following lemma.

Lemma 3.10. If M = (A C
Z B ) ∈ S, A1 = PR(C)⊥A|H, and B1 = B|N(C), then

the following properties hold.
(i) If 0 is not an eigenvalue of C∗, then σM (0⊕ 0⊕ x) = σB1

(x) for x ∈ K.
(ii) σA1(x) ⊂ σM (x⊕ y ⊕ z) for x⊕ y ⊕ z ∈ R(C)⊥ ⊕R(C)⊕K.
(iii) {0}⊕{0}⊕HB1(F ) = HM (F ) and HM (F ) ⊂ HA1(F )⊕N(C)⊕N(C)⊥

hold where HM (F ) := {x⊕ y ⊕ z : σM (x⊕ y ⊕ z) ⊂ F}.

Proof. (i) Suppose that λ0 ∈ ρM (0⊕0⊕x). Then there is anH⊕N(C)⊕N(C)⊥-
valued analytic function f(λ) in a neighborhood D of λ0 such that

(M − λ)

f1(λ)
f2(λ)
f3(λ)

 =

0
0
x


for every λ ∈ D. Hence we obtain from (3) that

(10)


(A1 − λ)f1(λ) = 0,

(A2 − λ)f1(λ) + C1f3(λ) = 0,

Zf1(λ) + (B1 − λ)f2(λ) + (B2 − λ)f3(λ) = x.

Let 0 be not an eigenvalue of C∗. Then A1 = 0 and A1 has the single-valued ex-
tension property. By (10), we have f1(λ) = 0. Moreover, since C1 is invertible,
C1f3(λ) = 0 implies f3(λ) = 0. Therefore, (10) becomes (B1 − λ)f2(λ) = x.
Hence λ0 ∈ ρB1

(x) and so ρM (0⊕ 0⊕ x) ⊂ ρB1
(x) for x ∈ K.

Conversely, assume that λ0 ∈ ρB1
(x). Then there exists an N(C)-valued

analytic function f(λ) in a neighborhood D of λ0 such that (B1 − λ)f(λ) = x
for every λ ∈ D. So we get that

(M − λ)(0⊕ f(λ)⊕ 0) =

A1 − λ 0 0
A2 − λ 0 C1

Z B1 − λ B2 − λ

 0
f(λ)

0


=

 0
0

(B1 − λ)f(λ)

 =

0
0
x

(11)

on D. Hence λ0 ∈ ρM (0 ⊕ 0 ⊕ x), and so ρB1(x) ⊂ ρM (0 ⊕ 0 ⊕ x). Therefore
σM (0⊕ 0⊕ x) = σB1

(x) for x ∈ K.
(ii) Let λ0 ∈ ρM (x ⊕ y ⊕ z). Then there is an H ⊕ N(C) ⊕ N(C)⊥-valued

analytic function f(λ) in a neighborhood D of λ0 such that

(M − λ)

f1(λ)
f2(λ)
f3(λ)

 =

xy
z


for every λ ∈ D. So we obtain from (3) that (A1 − λ)f1(λ) = x. Hence
λ0 ∈ ρA1

(x) and so ρM (x⊕ y⊕ z) ⊂ ρA1
(x) for x⊕ y⊕ z ∈ R(C)⊥⊕R(C)⊕K.



902 I. J. AN, E. KO, AND J. E. LEE

(iii) If x ∈ HB1
(F ), then σB1

(x) ⊂ F . Since σM (0 ⊕ 0 ⊕ x) = σB1
(x), it

follows that σM (0 ⊕ 0 ⊕ x) ⊂ F . Therefore we have 0 ⊕ 0 ⊕ x ∈ HM (F ).
Hence {0}⊕{0}⊕HB1(F ) ⊂ HM (F ) holds. Conversely, if 0⊕ 0⊕x ∈ HM (F ),
then σM (0 ⊕ 0 ⊕ x) ⊂ F . Since σM (0 ⊕ 0 ⊕ x) = σB1(x), it follows that
σB1

(x) ⊂ F . Hence x ∈ HB1
(F ) and so HM (F ) ⊂ {0} ⊕ {0} ⊕ HB1

(F ). For
the second inclusion, if x ⊕ y ⊕ z ∈ HM (F ), then σM (x ⊕ y ⊕ z) ⊂ F . Since
σA1

(x) ⊂ σM (x ⊕ y ⊕ z), it follows that σA1
(x) ⊂ F . Therefore we have

x ∈ HA1(F ). Hence HM (F ) ⊂ HA1(F )⊕N(C)⊕N(C)⊥ holds. �

Theorem 3.11. Let M = (A C
Z B ) ∈ S, A1 = PR(C)⊥A|H, and B1 = B|N(C).

Then the following statements hold.
(i) If 0 is not an eigenvalue of C∗, then M has the property (C) if and only

if B1 has the property (C).
(ii) Assume that HA1

(F ) ⊕N(C) ⊕N(C)⊥ ⊂ HM (F ) holds. If A1 has the
property (C), then M has the property (C).

Proof. (i) Suppose that M has the property (C). Then HM (F ) is closed. By
Lemma 3.10, {0}⊕ {0}⊕HB1(F ) is closed and so HB1(F ) is closed. Hence B1

has the property (C). The converse implication holds by a similar way.
(ii) Assume that HA1

(F )⊕N(C)⊕N(C)⊥ ⊂ HM (F ) holds. If A1 has the
property (C), then HA1

(F ) is closed. By Lemma 3.10, HM (F ) is closed. Hence
M has the property (C). �

Corollary 3.12. Let M = (A C
Z B ) ∈ L(H⊕K) where C : K → H is Fredholm,

0 is not an eigenvalue of C∗, and B is totally praranormal on K. Then M ∈ S
and M has the property (C).

Proof. Let C be Fredholm. Then M ∈ S. Since B is totally praranormal, it
follows from [19] that B has the property (C) and so B1 has the property (C).
Hence M has the property (C) by Theorem 3.11. �

Corollary 3.13. Let M = (A C
Z B ) ∈ L(H⊕K) where C : K → H satisfies that

the family {Cα : α > 0} is uniformly bounded where Cα := (C∗C + αI)−1C∗

and let 0 be not an eigenvalue of C∗. If B is totally praranormal on K, then
M ∈ S and M has the property (C).

Proof. By hypotheses, ran(C) is closed from [25, Proposition 3.2]. Then M ∈
S. Since B is totally praranormal, it follows from [19] that B has the property
(C) and so B1 has the property (C). HenceM has the property (C) by Theorem
3.11. �

Example 3.14. Let B : L2[0, 1]→ L2[0, 1] be the Volterra operators given by

Bf(x) =

∫ x

0

f(t)dt.

It is known that every Volterra operator is quasinilpotent, that is, σ(B) = {0}.
So B is totally paranormal, and then it has the property (C). And let C :
L2[0, 1]→ L2[0, 1] be defined by Cf(x) = f(1− x). Then C is invertible, so it



PROPERTIES OF OPERATOR MATRICES 903

is Fredholm and M = (A C
Z B ) ∈ S. Moreover, 0 is not an eigenvalue of C∗ on

L2[0, 1]. Therefore it follows from Corollary 3.12 that M has the property (C).

4. Weyl and Browder type spectra

In this section, we consider the various spectra for the operator matrices in
the class S. So M is an operator matrix in S with the representation (2).

Lemma 4.1. For M ∈ S, the following properties hold:
(i) σ(M) ⊆ σ(B1 ⊕A1) = σ(B1) ∪ σ(A1).
(ii) σe(M) ⊆ σe(B1 ⊕A1) = σe(B1) ∪ σe(A1).
(iii) σw(M) ⊆ σw(B1 ⊕A1) ⊆ σw(B1) ∪ σw(A1).

Proof. (i) For given λ ∈ C, we have the factorization (3) for M − λ. Thus if
B1 ⊕A1 are invertible, then it is obvious from (3) that M − λ is invertible.

(ii) Suppose that (B1 ⊕A1)− λ is Fredholm. Note that

(12)

(
B1 − λ 4λ

0 A1 − λ

)
=

(
I 0
0 A1 − λ

)(
I 4λ
0 I

)(
B1 − λ 0

0 I

)
.

From (12),
(
B1−λ 4λ

0 A1−λ

)
is also Fredholm. On the other hand, since C1 is

invertible, it follows from (3) and (4) that M − λ is Fredholm.
(iii) Suppose that (B1 ⊕ A1) − λ is Weyl. Then B1 − λ and A1 − λ are

Fredholm, and ind(B1 − λ) + ind(A1 − λ) = 0. Thus we have that

ind(M − λ) = ind

(
B1 − λ 4λ

0 A1 − λ

)
= ind(B1 − λ) + ind(A1 − λ) = 0.

Since M −λ is Fredholm by the relation (ii), we prove that M −λ is Weyl. �

Proposition 4.2. Let M ∈ S. If one of the following statements holds;
(i) σSF+

(A1) ⊂ σe(M) or σSF−(B1) ⊂ σe(M).
(ii) B∗1 has the single-valued extension property at λ 6∈ σSF+

(B1) or A1 has
the single-valued extension property at λ 6∈ σSF−(A1), then

σe(M) = σe(B1) ∪ σe(A1).

Proof. From Lemma 4.1, it suffices to show that σe(B1) ∪ σe(A1) ⊂ σe(M).
(i) Suppose that σSF+

(A1) ⊂ σe(M). For the contrary, we assume that
σe(M) 6= σe(B1) ∪ σe(A1). Then there exists λ ∈ C such that

λ ∈ [σe(B1) ∪ σe(A1)] \ σe(M).

ThenM−λ is Fredholm and henceA1−λ is upper semi-Fredholm by hypothesis.

On the other hand, (3) and (4) yield that
(
B1−λ 4λ

0 A1−λ

)
⊕C1 is Fredholm. Since

C1 is invertible, it means that
(
B1−λ 4λ

0 A1−λ

)
is also Fredholm. It follows from

[20, Lemma 4] that A1−λ is lower semi-Fredholm. Thus A1−λ is Fredholm, so
that B1 − λ is also Fredholm from (12). So, this is a contradiction. Therefore,
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σe(M) = σe(B1) ∪ σe(A1). If σSF−(B1) ⊂ σe(M), then the proof follows from
the previous arguments.

(ii) Assume that λ 6∈ σe(M). Since M − λ is Fredholm,
(
B1−λ 4λ

0 A1−λ

)
is

Fredholm from the proof of (i). This ensures from [20, Lemma 4] that A1−λ is
lower semi-Fredholm and B1−λ is upper semi-Fredholm. If B∗1 has the single-
valued extension property at λ 6∈ σSF+

(B1), then β(B1 − λ) ≤ α(B1 − λ) <∞
by [1, Corollary 3.19]. Hence B1 − λ is Fredholm. Since

(
B1−λ 4λ

0 A1−λ

)
is

Fredholm, it follows from (12) that A1 − λ is also Fredholm. Thus, σe(B1) ∪
σe(A1) ⊂ σe(M). Similarly, if A1 has the single-valued extension property at
λ 6∈ σSF−(A1), then B1 − λ is Fredholm, so that σe(B1) ∪ σe(A1) ⊂ σe(M).
Hence this completes the proof. �

We next state the relation between Weyl spectrum of M ∈ S and the union
of Weyl spectra of A1 and B1.

Theorem 4.3. For M ∈ S, the following equality satisfies;

σw(A1) ∪ σw(B1) = σw(M) ∪Q,

where Q is the union of certain of the holes in σw(M) which happen to be
subsets of σw(A1) ∩ σw(B1).

Proof. It suffices to show that Claims 1 and 2 hold.

Claim 1. For M ∈ S, the following inclusions hold;

(13) [σw(B1) ∪ σw(A1)] \ [σw(B1) ∩ σw(A1)] ⊂ σw(M) ⊂ σw(B1) ∪ σw(A1).

The second inclusion in (13) holds by Lemma 4.1. To show the first inclusion,
we let λ ∈ [σw(B1)∪σw(A1)] \σw(M). Then M −λ is Fredholm and ind(M −
λ) = 0. If A1 − λ is Weyl, then it follows from (3) and (12) that B1 − λ is

Fredholm. On the other hand,
(
B1−λ 4λ

0 A1−λ

)
is Weyl and from [21, page 134],

ind

(
B1 − λ 4λ

0 A1 − λ

)
= ind(A1 − λ) + ind(B1 − λ),

and hence ind(B1 − λ) = 0. Therefore B1 − λ is Weyl. Then this means that
λ ∈ σw(B1) ∩ σw(A1). Thus (13) can be proved.

Claim 2. For M ∈ S, we have

(14) η(σw(M)) = η(σw(B1) ∪ σw(A1)),

where ηK denotes the polynomially convex hull of the compact set K ⊂ C.

If M − λ is Weyl, then
(
B1−λ 4λ

0 A1−λ

)
is Fredholm as in the proof of Lemma

4.1(ii). By [20, Lemma 4], we get that A1 − λ is lower semi-Fredholm and
B1 − λ is upper semi-Fredholm. This means that

σSF+(B1) ∪ σSF−(A1) ⊂ σw(M).
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Since int(σw(M)) ⊂ int(σw(A1)∪σw(B1)) by (13), it follows from the previous
fact and from punctured neighborhood theorem ([15] and [20]) that

∂(σw(B1) ∪ σw(A1)) ⊂ ∂(σw(B1)) ∪ ∂(σw(A1))

⊂ σSF+(B1) ∪ σSF−(A1) ⊂ σw(M).

Therefore it follows from (13) that (14) can be proved, so that the passage from
σw(B1) ∪ σw(A1) to σw(M) is the filling in certain of the holes in σw(B1) ∩
σw(A1). Hence this completes the proof of this theorem. �

The following corollary follows from Theorem 4.3.

Corollary 4.4. Let M ∈ S. If σw(A1) ∩ σw(B1) has no interior points, then
σw(M) = σw(B1) ∪ σw(A1).

Proof. If σw(A1)∩σw(B1) has no interior points, then σw

(
B1 4
0 A1

)
= σw(B1)∪

σw(A1) from [21, Corollary 7] where 4 = Z − B2C
−1
1 A2. Since σw(M) =

σw

(
B1 4
0 A1

)
by the proof of Theorem 4.3 and Lemma 4.1, we obtain σw(M) =

σw(B1) ∪ σw(A1). �

Recall that for an operator T ∈ L(H), a hole in σe(T ) is a nonempty bounded
component of C\σe(T ) and a pseudohole in σe(T ) is a nonempty component of
σe(T ) \ σSF+

(T ) or of σe(T ) \ σSF−(T ), where σSF+(T ) and σSF−(T ) denote
the left and the right essential spectrum, respectively. The spectral picture of
an operator T ∈ L(H) (notation: SP (T )) is the structure consisting of the set
σe(T ), the collection of holes and pseudoholes, and the indices associated with
these holes and pseudoholes (see [23] for more details). An operator T ∈ L(H)
is said to be isoloid if every isolated point of σ(T ) is an eigenvalue of T . In
the following theorem, we give the result of Weyl’s theorem for 2× 2 operator
matrices.

Theorem 4.5. Let M ∈ S. Assume that the following statements hold:
(i) either SP (A1) or SP (B1) has no pseudoholes.
(ii) B1 satisfies Weyl’s theorem.
(iii) B1 is isoloid.
If Weyl’s theorem holds for (B1 ⊕A1), then Weyl’s theorem holds for M .

Proof. If R(C) is closed, the statements (i), (ii), and (iii) are satisfied and
Weyl’s theorem holds for (B1⊕A1), then it follows from [21, Theorem 2.4] that

Weyl’s theorem holds for
(
B1 4
0 A1

)
. By (3), we know that λ ∈ σ(M) if and only

if λ ∈ σ
(
B1 4
0 A1

)
and λ ∈ σw(M) if and only if λ ∈ σw

(
B1 4
0 A1

)
, respectively.

Hence Weyl’s theorem holds for M . �

Corollary 4.6. Let M ∈ S. Suppose that A1 and B1 are hyponormal. If either
SP (A1) or SP (B1) has no pseudoholes, then Weyl’s theorem holds for M .
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Proof. Since A1 and B1 are hyponormal, they are isoloid. Moreover, since A1

and B1 satisfy Weyl’s theorem by [6] and [1], it follows that B1 ⊕ A1 satisfies
Weyl’s theorem from [20]. Hence Weyl’s theorem holds for M from Theorem
4.5 �

If u and v are nonzero vectors in H, we write u⊗ v for the operator of rank
one defined by (u ⊗ v)x = 〈x, v〉u, for x ∈ H, where 〈 , 〉 denotes the inner
product of H.

Corollary 4.7. Let M ∈ S. If an isoloid operator A1 = N + (u⊗ v) where N
is normal and (u ⊗ v) is a rank one operator with N(u ⊗ v) = (u ⊗ v)N and
B1 is paranormal, then Weyl’s theorem holds for M .

Proof. Since A1 = N + (u ⊗ v) is essentially normal, SP (A1) has no pseudo-
holes. Also, N satisfies Weyl’s theorem and (u ⊗ v) is a rank one operator
commuting with N , it implies from [22] that Weyl’s theorem holds for A1.
Moreover, it holds from [7] that B1 is isoloid and satisfies Weyl’s theorem.
Hence σw(B1 ⊕ A1) = σw(B1) ∪ σw(A1), equivalently, Weyl’s theorem holds
for B1 ⊕A1. Consequently, this means that Weyl’s theorem holds for M from
Theorem 4.5. �

Next, we begin with the following proposition. Proposition 4.8 says that the
passage from σa(A1) ∪ σa(B1) to σa(M) is the punching of some open sets in
σs(B1) ∩ σa(A1) for M in the class S.

Proposition 4.8. Let M ∈ S. Then the following equation holds;

σa(A1) ∪ σa(B1) = σa(M) ∪Q,
where Q is the union of certain of the holes in σa(B1) which happen to be
subsets of σs(B1) ∩ σa(A1). In particular, if σs(B1) ∩ σa(A1) has no interior
points, then σa(A1) ∪ σa(B1) = σa(M).

Proof. Suppose that λ 6∈ σa(A1) ∪ σa(B1). Then A1 − λ and B1 − λ are

bounded below. It ensures from [16, page 269] that
(
B1−λ 4λ

0 A1−λ

)
is bounded

below. Hence from (3) and (4), we have that M − λ is also bounded below.
Hence

σa(M) = σa

(
B1 4
0 A1

)
,(15)

where 4 = Z − B2C
−1
1 A2. Hence we get this result from [16, Theorem 2].

From the above result, we have immediately the second statement. �

We next investigate the connection from σab(A1) ∪ σab(B1) to σab(M) for
M ∈ S. The following lemmas provide a clue.

Lemma 4.9. Let M ∈ S. Then the following inclusions hold;

(16) σab(B1) ⊆ σab(M) ⊆ σab(B1) ∪ σab(A1).
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Proof. Let λ 6∈ σab(M). Then M−λ is upper semi-Fredholm with finite ascent.

Since C1 is invertible, it follows from (3) that
(
B1−λ 4λ

0 A1−λ

)
is upper semi-

Fredholm with finite ascent and so B1 − λ is upper semi-Fredholm. Moreover,

since N ((B1 − λ)n) ⊕ {0} ⊂ N
((

B1−λ 4λ
0 A1−λ

)n)
for every n ∈ N, it follows

that B1 − λ has finite ascent. Hence λ 6∈ σab(B1).
Let λ 6∈ σab(B1)∪σab(A1). Then B1−λ and A1−λ are upper semi-Fredholm

operators with finite ascent. Since both B1− λ and A1− λ have finite ascents,

it ensures from [5, Lemma 2.2] that
(
B1−λ 4λ

0 A1−λ

)
has finite ascent. Since C1

is invertible, it follows from (3) that M − λ has finite ascent. Since
(
I 4λ
0 I

)
is invertible, it gives from (12) that

(
B1−λ 4λ

0 A1−λ

)
is upper semi-Fredholm.

Therefore, M is upper semi-Fredholm by the previous statements. Hence,
λ 6∈ σab(M). �

Lemma 4.10. Let M ∈ S. Then the following equality holds;

(17) η(σab(M)) = η(σab(B1) ∪ σab(A1)),

where ηK denotes the polynomially convex hull of the compact set K ⊂ C.

Proof. It is well known that for every operator T ∈ L(H),

∂σb(T ) ⊂ σab(T ) ⊂ σb(T ),

so that η(σb(T )) = η(σab(T )). Similarly, it satisfies that

η(σb(B1) ∪ σb(A1)) = η(σab(B1) ∪ σab(A1)).

Therefore we have that

η(σab(B1) ∪ σab(A1)) = η(σb(B1) ∪ σb(A1))

= η(σb(M)) = η(σab(M)). �

Using Lemmas 4.9 and 4.10, we have the following theorem.

Theorem 4.11. Let M ∈ S. Then the following relations hold;

σab(A1) ∪ σab(B1) = σab(M) ∪Q,
where Q is the union of certain of the holes in σab(M) which happen to be
subsets of σab(A1) \ σab(B1).

Proof. Lemmas 4.9 and 4.10 imply that

(18) (σab(B1) ∪ σab(A1)) \ σab(M) ⊂ σab(A1) \ σab(B1).

Therefore it follows from (17) that (18) can be proved, so that the passage from
σab(B1) ∪ σab(A1) to σab(M) is the filling in certain of the holes in σab(A1) \
σab(B1). Hence this completes the proof of this theorem. �

Corollary 4.12. Let M ∈ S. If σab(A1)\σab(B1) has no interior points, then
σab(A1) ∪ σab(B1) = σab(M) and σa(A1) ∪ σa(B1) = σa(M).
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Proof. Since acc σa(T ) ⊆ σab(T ) for every operator T ∈ L(H), it follows that
σab(A1) has no interior points if and only if σa(A1) has no interior points. From
Theorem 4.11 and [16], we get this result. �

5. Weyl type theorems

In this section, we study a-Weyl’s theorem and a-Browder’s theorem for
operator matrices in the class S. So we start with the following theorem.

Theorem 5.1. Let M ∈ S. Assume that either σSF+(B1) = σSF+(A1) or
σSF+(A1) ∩ σSF−(B1) = ∅ holds. If B1 ⊕ A1 satisfies a-Browder’s theorem,
then M satisfies a-Browder’s theorem.

Proof. For the proof, it suffices to show that σab(M) ⊆ σea(M). Suppose that
λ 6∈ σea(M). First, we prove that σea(M) = σea(B1 ⊕A1).

Assume that σSF+(B1) = σSF+(A1). If λ 6∈ σea(M), then, since C1 is

invertible, it follows from (3) that λ 6∈ σea
(
B1 4
0 A1

)
. By [10, Lemma 3.2], we

have (i) λ 6∈ σSF+(B1) and α(A1−λ) <∞ and ind(B1−λ)+ind(A1−λ) ≤ 0 or
(ii) λ 6∈ σSF+(B1) and α(A1 − λ) = β(B1 − λ) =∞. On the other hand, since
σSF+(B1) = σSF+(A1), it follows that (B1 ⊕ A1)− λ is upper semi-Fredholm
and ind[(B1⊕A1)−λ] = ind(B1−λ)+ind(A1−λ) ≤ 0. Thus, λ 6∈ σea(B1⊕A1)
and so σea(M) = σea(B1 ⊕ A1). Suppose that σSF−(B1) ∩ σSF+(A1) = ∅. If
λ 6∈ σea(M), then we consider two cases:
(Case 1) If λ ∈ σSF−(B1), then β(B1 − λ) = ∞. The relation σSF−(B1) ∩
σSF+(A1) = ∅ implies λ 6∈ σSF+(A1). Since M − λ is upper semi-Fredholm,

it follows that
(
B1−λ ∆λ

0 A1−λ
)

is upper semi-Fredholm and so B1 − λ is upper
semi-Fredholm. Since A1 − λ and B1 − λ are upper semi-Fredholm, it follows
that (B1 ⊕ A1) − λ is also upper semi-Fredholm and ind[(B1 ⊕ A1) − λ] ≤ 0.
Hence λ 6∈ σea(B1 ⊕A1) and so σea(M) = σea(B1 ⊕A1).
(Case 2) If λ 6∈ σSF−(B1), then, since B1 − λ is upper semi-Fredholm, B1 − λ
is Fredholm. Now, we will show that A1 − λ is upper semi-Fredholm. For the
contrary, let λ ∈ σSF+(A1). Since A1 − λ has closed range, it follows that
α(A1 − λ) =∞. Therefore, we have β(B1 − λ) =∞ by [10, Lemma 3.2]. This
is a contradiction. Thus, λ 6∈ σSF−(B1) implies λ 6∈ σSF+(A1). Therefore,
(B1 ⊕ A1) − λ is upper semi-Fredholm and ind[(B1 ⊕ A1) − λ] ≤ 0. Thus,
λ 6∈ σea(B1⊕A1). Hence σea(M) = σea(B1⊕A1). Since λ 6∈ σea(M), it follows
that λ 6∈ σea(B1 ⊕ A1) from the previous facts. Moreover, since (B1 ⊕ A1)
satisfies a-Browder’s theorem, it means that λ 6∈ σab(B1 ⊕ A1). Since both

B1 − λ and A1 − λ have finite ascents, it holds that
(
B1−λ ∆λ

0 A1−λ
)

has finite

ascent by [5]. Since C1 is invertible, it follows from (3) that M − λ has finite
ascent. On the other hand, M − λ is bounded below and so λ ∈ isoσa(M).
Hence λ 6∈ σea(M). Hence this completes the proof. �

Let us recall that an operator T ∈ L(H) is said to be complex symmetric if
there exists a conjugation J on H such that T = JT ∗J . In this case, we say
that T is complex symmetric with conjugation J .
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Corollary 5.2. Let M ∈ S. Assume that either σSF+(B1) = σSF+(A1) or
σSF+(A1)∩σSF−(B1) = ∅ holds. Suppose that A1 and B1 are complex symmet-
ric. If A1 and B1 have the single-valued extension property, then M satisfies
a-Browder’s theorem.

Proof. Let A1 and B1 be complex symmetric. Then it is clear that B1 ⊕ A1

is also complex symmetric. Since A1 and B1 have the single-valued extension
property, it follows that B1⊕A1 has also the single-valued extension property.
So, B1 ⊕ A1 satisfies Browder’s theorem from [1]. On the other hand, since
B1 ⊕ A1 is complex symmetric and B1 ⊕ A1 satisfies Browder’s theorem, it
satisfies a- Browder’s theorem from [18, Theorem 4.6]. Hence, from Theorem
5.1, M satisfies a-Browder’s theorem. �

Example 5.3. Let M ∈ S. Assume that either σSF+(B1) = σSF+(A1) or
σSF+(A1) ∩ σSF−(B1) = ∅. If A1 and B1 are normal operators, then M
satisfies a-Browder’s theorem. Indeed, if A1 and B1 are normal operators, then
A1 and B1 are complex symmetric from [13]. So, it is obvious that B1 ⊕ A1

is also complex symmetric. Moreover, in this case, since A1 and B1 have the
single-valued extension property, it follows that B1 ⊕ A1 has also the single-
valued extension property. Thus, B1⊕A1 satisfies Browder’s theorem from [1].
Hence M satisfies a-Browder’s theorem from Corollary 5.2.

In general, we know that α (A B
0 C ) <∞ ensures that α(A) <∞. If α(TS) <

∞ and S is invertible, it is easy to show that α(TS) = α(T ) for every T, S ∈
L(H). In the following lemma, we consider finite multiplicity between the

operator matrices M and
(
B1 4
0 A1

)
.

Lemma 5.4. Let M ∈ S. If 0 < α(M − λ) <∞, then

0 < α

(
B1 − λ 4λ

0 A1 − λ

)
<∞,

where A1− λ = PR(C)⊥(A− λ)|H, A2− λ = PR(C)(A− λ)|H, B1− λ denotes a

mapping B−λ from N(C) into K, B2−λ denotes a mapping B−λ from N(C)
⊥

into K, 4λ = Z − (B2 − λ)C−1
1 (A2 − λ), and PR(C) denotes the projection of

H onto R(C).

Proof. By (3), (4), and the invertibility of C1, we can see that

α(M − λ) = α(

(
B1 − λ 4λ

0 A1 − λ

)
⊕ C1) = α

(
B1 − λ 4λ

0 A1 − λ

)
.

�

Theorem 5.5. Let M ∈ S and let σab(A1) \ σab(B1) have no interior points.
Then M satisfies a-Browder’s theorem if and only if B1 and A1 have the single-

valued extension property at λ 6∈ σea
(
B1 4
0 A1

)
.

Proof. Suppose thatM satisfies a-Browder’s theorem. Then σea(M) = σab(M).

Let λ 6∈ σea(M). Since C1 is invertible, it ensures from (3) that λ 6∈ σea
(
B1 4
0 A1

)
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and thus λ 6∈ σab
(
B1 4
0 A1

)
. Since σab(A1) \ σab(B1) has no interior points, it

gives that λ 6∈ σab(B1) ∪ σab(A1). Therefore, A1 − λ and B1 − λ has finite
ascent. Hence B1 and A1 have the single-valued extension property at λ.

Conversely, it suffices to show that σab(M) ⊆ σea(M). Let λ 6∈ σea(M).

Since C1 is invertible, it ensures from (3) that λ 6∈ σea
(
B1 4
0 A1

)
. Since B1 and

A1 have the single-valued extension property at λ,
(
B1 4
0 A1

)
has the single-

valued extension property at λ. Moreover, since
(
B1−λ ∆λ

0 A1−λ
)

is upper semi-

Fredholm, it follows that
(
B1−λ ∆λ

0 A1−λ
)

has finite ascent from [1]. Thus λ 6∈
σab

(
B1 4
0 A1

)
. On the other hand, since σab(A1)\σab(B1) has no interior points,

λ 6∈ σab(B1) ∪ σab(A1) so that λ 6∈ σab(M). Hence M satisfies a-Browder’s
theorem. �

Corollary 5.6. Let M ∈ S. If one of the following statements holds;
(i) A has finite spectrum and B is paranormal,
(ii) A = I and B is paranormal,

then M satisfies a-Browder’s theorem.

Proof. (i) Suppose that A has finite spectrum and B is paranormal. Then B1

is also paranormal. In this case, A1 and B1 have the single-valued extension
property. Moreover, σab(A1) \ σab(B1) has no interior points. Hence, from
Theorem 5.5, M satisfies a-Browder’s theorem.

(ii) Let A = I and B is paranormal. Then B1 and A1 are also paranor-
mal. Moreover, in this case, σab(A1) \ σab(B1) has no interior points. In this
case, since B1 and A1 have paranormal, they have the single-valued extension
property. Hence, from Theorem 5.5, M satisfies a-Browder’s theorem. �

Example 5.7. Let M ∈ S. Suppose that σ(A) = {0, 1} and B is a weighted
shift defined by

B(e0, e1, e2, . . . , en, . . .) = (

√
1

2
e1,

√
2

3
e2,

√
3

4
e3, . . . ,

√
n+ 1

n+ 2
en+1, . . .).

Then we obtain that

〈[(B∗)2B2 − 2λ(B∗B) + λ2]en, en〉

= 〈[ (n+ 1)

n+ 3
− 2λ

n+ 1

n+ 2
+ λ2]en, en〉

= 〈[(λ− n+ 1

n+ 2
)2 +

(n+ 1)

(n+ 3)(n+ 2)2
]en, en〉 ≥ 0

for all λ > 0 and all positive n. Thus B is clearly a paranormal operator.
Hence M satisfies a-Browder’s theorem from Corollary 5.6.

Finally, we provide some conditions for which M satisfies a-Weyl’s theorem.
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Theorem 5.8. Let M ∈ S and σab(A1) \ σab(B1) have no interior points. If

B1 and A1 have the single-valued extension property at λ 6∈ σea
(
B1 4
0 A1

)
and

B1 ⊕A1 satisfies a-Weyl’s theorem, then M satisfies a-Weyl’s theorem.

Proof. Suppose that B1 and A1 have the single-valued extension property at

λ 6∈ σea
(
B1 4
0 A1

)
. Then, by Theorem 5.5, a-Browder’s theorem for M which

means that

σa(M) \ σea(M) = pa00(M) ⊆ πa00(M).

If λ ∈ πa00(M), then λ ∈ isoσa(M) and α(M − λ) <∞. Since C1 is invertible,
it ensures from (3) and Lemma 5.4 that

λ ∈ isoσa
(
B1 4
0 A1

)
and α(

(
B1 4
0 A1

)
− λ) <∞.

Now we claim that σa

(
B1 4
0 A1

)
= σa(B1⊕A1). Since σab(A1) \σab(B1) has no

interior points, it follows that

(19) σa(B1 ⊕A1) = σa(B1) ∪ σa(A1) = σa

(
B1 4
0 A1

)
.

Thus, λ ∈ isoσa(B1 ⊕A1). From [16], we have

α(

(
B1 4
0 A1

)
− λ) <∞ implies 0 < α[(B1 ⊕A1)− λ] <∞.

So, λ ∈ πa00(B1⊕A1). Since B1⊕A1 satisfies a-Weyl’s theorem, it follows that
λ ∈ σa(B1⊕A1)\σea(B1⊕A1). So, λ 6∈ σab(B1⊕A1). Since σab(A1)\σab(B1)
has no interior points, it holds that λ 6∈ σab(M) from (19) and Theorem 4.11.
Therefore, M satisfies a-Weyl’s theorem. �

Corollary 5.9. Let M ∈ S. If A has finite spectrum and B is normal, then
M satisfies a-Weyl’s theorem.

Proof. Suppose that A has finite spectrum and B is normal. Then B1 is also
normal. In this case, A1 and B1 have the single-valued extension property.
Moreover, σab(A1)\σab(B1) has no interior points. Hence, M satisfies a-Weyl’s
theorem from Theorem 5.8. �

Example 5.10. Let C be the bilateral shift given by Cen = en+1 on L2(µ)
with respect to en(z) = zn for n ∈ Z. If A = I and B is a multiplication
operator on a Lebesgue space L2(µ) where µ is a planar positive Borel measure
with compact support. Then (A C

Z B ) ∈ S. In this case, since A and B are
normal, B1 and A1 are also normal. Therefore, B1 ⊕ A1 satisfies a-Weyl’s
theorem. Moreover, in this case, σab(A1) \ σab(B1) has no interior points. On
the other hand, since B1 and A1 have the single-valued extension property, we
conclude from Theorem 5.8 that (A C

Z B ) satisfies a-Browder’s theorem for every
Z ∈ L(L2(µ), L2(µ)).



912 I. J. AN, E. KO, AND J. E. LEE

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer

Academic Publishers, Dordrecht, 2004.

[2] Alatancang, G. Hou, and G. Hai, Perturbation of spectra for a class of 2 × 2 operator
matrices, Acta Math. Appl. Sin. Engl. Ser. 28 (2012), no. 4, 711–720. https://doi.org/

10.1007/s10255-012-0195-x

[3] C. Benhida, E. H. Zerouali, and H. Zguitti, Spectra of upper triangular operator matrices,
Proc. Amer. Math. Soc. 133 (2005), no. 10, 3013–3020. https://doi.org/10.1090/

S0002-9939-05-07812-3

[4] S. W. Brown, Hyponormal operators with thick spectra have invariant subspaces, Ann.
of Math. (2) 125 (1987), no. 1, 93–103. https://doi.org/10.2307/1971289

[5] X. Cao, M. Guo, and B. Meng, Weyl’s theorem for upper triangular operator matrices,

Linear Algebra Appl. 402 (2005), 61–73. https://doi.org/10.1016/j.laa.2004.12.005
[6] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966),

285–288. http://projecteuclid.org/euclid.mmj/1031732778
[7] R. E. Curto and Y. M. Han, Weyl’s theorem for algebraically paranormal operators,

Integral Equations Operator Theory 47 (2003), no. 3, 307–314. https://doi.org/10.

1007/s00020-002-1164-1
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