DOI QR코드

DOI QR Code

Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads

  • Altun, Turkan (Department of Chemical Engineering, Konya Technical University) ;
  • Ecevit, Huseyin (Department of Chemical Engineering, Konya Technical University)
  • Received : 2019.03.19
  • Accepted : 2019.06.21
  • Published : 2020.06.30

Abstract

In this study, cherry kernel shell pyrolytic charcoal was synthesized (CKSC) and composite beads were obtained by blending this pyrolytic charcoal with chitosan and Fe2O3 nanoparticles (Fe-C-CKSC). Cr(VI) adsorption from aqueous solutions by Fe-C-CKSC composite beads and CKSC adsorbents was studied comparatively. The effects of Cr(VI) initial concentration, adsorbent dosage, contact time, pH and temperature parameters on Cr(VI) adsorption were investigated. Adsorption reached an equilibrium point within 120 min for CKSC and Fe-C-CKSC adsorbents. The maximum Cr(VI) removal was obtained at the initial pH value of 1.56 for CKSC and 2.00 for Fe-C-CKSC. The optimum adsorbent dosage was found to be 5 g/L for CKSC and 3 g/L for Fe-C-CKSC. Based on the Langmuir model, the maximum adsorption capacities were calculated as 14.455 mg/g and 47.576 mg/g for CKSC and Fe-C-CKSC, respectively. Thermodynamic and kinetic studies were performed. As a result of adsorption kinetics calculations, adsorption was found to be consistent with the pseudo second order kinetic model. Characterization of the synthesized adsorbents was performed by SEM, BET, FTIR and elemental analysis. This study has shown that low cost adsorbents CKSC and Fe-C-CKSC can be used in Cr(VI) removal from aqueous solutions.

Keywords

References

  1. Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015;22:15386-15415. https://doi.org/10.1007/s11356-015-5278-9
  2. Chen T, Zhou Z, Xu S, Wang H, Lu W. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015;190:388-394. https://doi.org/10.1016/j.biortech.2015.04.115
  3. Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C. Facile preparation of amino functionalized graphene oxide decorated with $Fe_3O_4$ nanoparticles for the adsorption of Cr(VI). Appl. Surf. Sci. 2016;384:1-9. https://doi.org/10.1016/j.apsusc.2016.05.022
  4. Kim TK, Kim T, Choe WS, Kim MK, Jung YJ, Zoh KD. Removal of heavy metals in electroplating wastewater by powdered activated carbon (PAC) and sodium diethyldithiocarbamate-modified PAC. Environ. Eng. Res. 2018;23:301-308. https://doi.org/10.4491/eer.2017.208
  5. Jiang YJ, Yu XY, Luo T, Jia Y, Liu JH, Huang XJ. Gamma-$Fe_2O_3$ nanoparticles encapsulated millimeter-sized magnetic chitosan beads for removal of Cr(VI) from water: Thermodynamics, kinetics, regeneration, and uptake mechanisms. J. Chem. Eng. Data. 2013;58:3142-3149. https://doi.org/10.1021/je400603p
  6. Zhang X, Fu W, Yin Y, et al. Adsorption-reduction removal of Cr (VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies. Bioresour. Technol. 2018;268:149-157. https://doi.org/10.1016/j.biortech.2018.07.125
  7. Lim AP, Aris AZ. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Biotechnol. 2014;13:163-181. https://doi.org/10.1007/s11157-013-9330-2
  8. Yilmaz C, Gokmen V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Ind. Crops Prod. 2013;49:130-135 https://doi.org/10.1016/j.indcrop.2013.04.048
  9. Altun T, Kar Y. Removal of Cr(VI) from aqueous solution by pyrolytic charcoals. New Carbon Mater. 2016;31:501-509. https://doi.org/10.1016/S1872-5805(16)60028-8
  10. Yahya MA, Al-Qodah Z, Ngah CZ. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 2015;46:218-235. https://doi.org/10.1016/j.rser.2015.02.051
  11. Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016;214:175-191. https://doi.org/10.1016/j.molliq.2015.12.013
  12. Lingamdinne LP, Chang YY, Yang JK, et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 2017;307:74-84. https://doi.org/10.1016/j.cej.2016.08.067
  13. Lingamdinne LP, Yang JK, Chang YY, Koduru JR. Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy 2016;165:81-89. https://doi.org/10.1016/j.hydromet.2015.10.022
  14. Karaer H, Kaya I. Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Micropor. Mesopor. Mater. 2016;232:26-38. https://doi.org/10.1016/j.micromeso.2016.06.006
  15. Rocher V, Bee A, Siaugue JM, Cabuil V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 2010;178:434-439. https://doi.org/10.1016/j.jhazmat.2010.01.100
  16. Freundlich H. Uber die adsorption in losungen. Zeitschrift fur physikalische Chemie. 1907;57:385-470. https://doi.org/10.1515/zpch-1907-5723
  17. Altun T, Parlayici S. Sepiolit-kitosan kompositlerinin sentezi ve bu kompozit ile sulu cozeltilerden Cr(VI) adsorpsiyonunun incelenmesi. Selcuk Universitesi Muhendislik, Bilim ve Teknoloji Dergisi. 2017;6:242-254.
  18. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916;38:2221-2295. https://doi.org/10.1021/ja02268a002
  19. Brion-Roby R, Gagnon J, Deschênes J-S, Chabot B. Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: kinetic, isotherm, thermodynamic and dynamic studies. Pure Appl. Chem. 2018;90:63-77. https://doi.org/10.1515/pac-2017-0305
  20. Ogundipe KD, Babarinde A. Comparative study on batch equilibrium biosorption of Cd(II), Pb(II) and Zn(II) using plantain (Musa paradisiaca) flower: Kinetics, isotherm, and thermodynamics. Chem. Int. 2017;3:135-149.
  21. Araujo CS, Almeida IL, Rezende HC, Marcionilio SM, Leon JJ, de Matos TN. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 2018;137:348-354. https://doi.org/10.1016/j.microc.2017.11.009
  22. Huang GL, Zhang HY, Shi JX, Langrish TAG. Adsorption of chromium(VI) from aqueous solutions using cross-linked magnetic chitosan beads. Ind. Eng. Chem. Res. 2009;48:2646-2651. https://doi.org/10.1021/ie800814h
  23. Pap S, Radonic J, Trifunovic S, Adamovic D, Mihajlovic I, Miloradov MV, Sekulic MT. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb$^{2+}$, Cd$^{2+}$ and Ni$^{2+}$ from aqueous wastes. J. Environ. Manage. 2016;184:297-306. https://doi.org/10.1016/j.jenvman.2016.09.089
  24. Vanamudan A, Pamidimukkala P. Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties. Int. J. Biol. Macromol. 2015;74:127-135. https://doi.org/10.1016/j.ijbiomac.2014.11.009
  25. Kolodynska D, Bak J, Koziol M, Pylypchuk LV. Investigations of heavy metal ion sorption using nanocomposites of iron-modified biochar. Nanoscale Res. Lett. 2017;12.
  26. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem. Eng. J. 2016;286:476-484. https://doi.org/10.1016/j.cej.2015.10.099
  27. Chen YW, Wang JL. Removal of radionuclide Sr$^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl. Eng. Des. 2012;242:445-451. https://doi.org/10.1016/j.nucengdes.2011.10.059
  28. Ravi T, Jabasingh SA. Preparation and characterization of higher degree-deacetylated chitosan-coated magnetic adsorbent for the removal of chromium(VI) from its aqueous mixture. J. Appl. Poly. Sci. 2018;135:45878. https://doi.org/10.1002/app.45878
  29. Parlayici S, Altun T. Kitosan kapli kaolin boncuklarin sulu cozeltilerden krom(VI) uzaklaştirilmasinda adsorban olarak kullanimi. Selcuk universitesi muhendislik, bilim ve teknoloji dergisi. 2017;6:140-151.
  30. Tran HV, Tran LD, Nguyen TN. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C Mater. Biol. Appl. 2010;30:304-310. https://doi.org/10.1016/j.msec.2009.11.008
  31. Vasudevan M, Ajithkumar PS, Singh RP, Natarajan N. Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents. Environ. Eng. Res. 2016;21:152-163. https://doi.org/10.4491/eer.2015.152
  32. Parlayici S. Alginate-coated perlite beads for the efficient removal of methylene blue, malachite green, and methyl violet from aqueous solutions: Kinetic, thermodynamic, and equilibrium studies. J. Anal. Sci. Technol. 2019;10:4. https://doi.org/10.1186/s40543-019-0165-5
  33. Jung C, Heo J, Han J, et al. Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Technol. 2013;106:63-71. https://doi.org/10.1016/j.seppur.2012.12.028
  34. Wu Y, Wen Y, Zhou J, Cao J, Jin Y, Wu Y. Comparative and competitive adsorption of Cr(VI), As(III), and Ni(II) onto coconut charcoal. Environ. Sci. Pollut. Res. 2013;20:2210-2219. https://doi.org/10.1007/s11356-012-1066-y
  35. Ben Tahar L, Oueslati MH, Abualreish MJA. Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions. J. Colloid. Interf. Sci. 2018;512:115-126. https://doi.org/10.1016/j.jcis.2017.10.044
  36. Rajput S, Pittman Jr CU, Mohan D. Magnetic magnetite($Fe_3O_4$) nanoparticle synthesis and applications for lead (Pb$^{2+}$) and chromium (Cr$^{6+}$) removal from water. J. Colloid. Interf. Sci. 2016;468:334-346. https://doi.org/10.1016/j.jcis.2015.12.008
  37. Wang W, Wang X, Wang X, et al. Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave. J. Environ. Sci. 2013;25:1726-1735. https://doi.org/10.1016/S1001-0742(12)60247-2
  38. Xiao Y, Liang H, Wang Z. $MnFe_2O_4$/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium. Mater. Res. Bull. 2013;48:3910-3915. https://doi.org/10.1016/j.materresbull.2013.05.099
  39. Wu Y, Ming Z, Yang S, et al. Adsorption of hexavalent chromium onto Bamboo Charcoal grafted by Cu$^{2+}$-N-aminopropylsilane complexes: Optimization, kinetic, and isotherm studies. J. Ind. Eng. Chem. 2017;46:222-233. https://doi.org/10.1016/j.jiec.2016.10.034
  40. Gopalakannan V, Viswanathan N. Synthesis of magnetic alginate hybrid beads for efficient chromium(VI) removal. Int. J. Biol. Macromol. 2015;72:862-867. https://doi.org/10.1016/j.ijbiomac.2014.09.024
  41. Nithya R, Gomathi T, Sudha P, Venkatesan J, Anil S, Kim S-K. Removal of Cr(VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite. Int. J. Biol. Macromol. 2016;87:545-554. https://doi.org/10.1016/j.ijbiomac.2016.02.076
  42. Soltani RDC, Khataee A, Safari M, Joo S. Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int. Biodeter. Biodegrad. 2013;85:383-391. https://doi.org/10.1016/j.ibiod.2013.09.004
  43. Reddy TV, Chauhan S, Chakraborty S. Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake. Environ. Eng. Res. 2017;22:95-107. https://doi.org/10.4491/eer.2016.094
  44. Lu J, Xu K, Yang J, Hao Y, Cheng F. Nano iron oxide impregnated in chitosan bead as a highly efficient sorbent for Cr(VI) removal from water. Carbohydr. Polym. 2017;173:28-36. https://doi.org/10.1016/j.carbpol.2017.05.070
  45. Yoon S-Y, Lee C-G, Park J-A, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 2014;236:341-347. https://doi.org/10.1016/j.cej.2013.09.053
  46. Gupta A, Balomajumder C. Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: Multicomponent adsorption, thermodynamic and kinetic study. J. Environ. Chem. Eng. 2015;3:785-796. https://doi.org/10.1016/j.jece.2015.03.003

Cited by

  1. Effective Adsorption of Hexavalent Chromium and Divalent Nickel Ions from Water through Polyaniline, Iron Oxide, and Their Composites vol.10, pp.8, 2020, https://doi.org/10.3390/app10082882
  2. Carbon-encapsulated MnFe2O4 nanoparticles: effects of carbon on structure, magnetic properties and Cr(VI) removal efficiency vol.126, pp.7, 2020, https://doi.org/10.1007/s00339-020-03760-7
  3. Recovery of detox tea wastes: Usage as a lignocellulosic adsorbent in Cr6+ adsorption vol.8, pp.5, 2020, https://doi.org/10.1016/j.jece.2020.104310
  4. Adsorption of Cr(VI) onto cross-linked chitosan-almond shell biochars: equilibrium, kinetic, and thermodynamic studies vol.12, pp.1, 2020, https://doi.org/10.1186/s40543-021-00288-0
  5. Nanocellulose Obtained from Biomass as Advance Adsorbent for Methylene Blue and Crystal Violet vol.1912, pp.1, 2020, https://doi.org/10.1088/1742-6596/1912/1/012015
  6. Kinetic studies of graphene oxide towards the removal of rhodamine B and congo red vol.101, pp.9, 2020, https://doi.org/10.1080/03067319.2019.1679802
  7. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan vol.287, pp.p3, 2022, https://doi.org/10.1016/j.chemosphere.2021.132279