참고문헌
- Toth G, Hermann T, Da Silva MR, Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 88: 299-309. https://doi.org/10.1016/j.envint.2015.12.017
- Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, et al. 2016. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicol. Environ. Saf. 130: 263-269. https://doi.org/10.1016/j.ecoenv.2016.04.032
- Plociniczak T, Kukla M, Watroba R, Piotrowska-Seget Z. 2013. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Chemosphere91: 1332-1337. https://doi.org/10.1016/j.chemosphere.2013.03.008
- Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R. 2018. Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Sci. Total Environ. 644: 1591-1601. https://doi.org/10.1016/j.scitotenv.2018.07.095
- Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
- Hussain A, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, et al. 2019. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ. Experi. Bot. 159: 23-33. https://doi.org/10.1016/j.envexpbot.2018.12.006
- Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, et al. 2016. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem. 108: 456-467. https://doi.org/10.1016/j.plaphy.2016.08.014
- Kamran MA, Xu RK, Li JY, Jiang J, Nkoh JN. 2018. Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotoxicol. Environ. Saf. 165: 11-18. https://doi.org/10.1016/j.ecoenv.2018.08.092
- Achal V, Pan X, Zhang D. 2011. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Engin. 37: 1601-1605. https://doi.org/10.1016/j.ecoleng.2011.06.008
- He J, Chen X, Zhang Q, Achal V. 2019. More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. Inter. Biodeter. Biodegrad. 140: 67-71. https://doi.org/10.1016/j.ibiod.2019.03.012
- Zhu X, Li W, Zhan L, Huang M, Zhang Q, Achal V. 2016. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environ. Pollut. 219: 149-155. https://doi.org/10.1016/j.envpol.2016.10.047
- Rajkumar M, Freitas H. 2008. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour. Technol. 99: 3491-3498. https://doi.org/10.1016/j.biortech.2007.07.046
- Das S, Jean JS, Kar S, Chou ML, Chen CY. 2014. Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. J. Hazard. Mater. 272: 112-120. https://doi.org/10.1016/j.jhazmat.2014.03.012
- Luo C, Wang S, Wang Y, Yang R, Zhang G, Shen Z. 2015. Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste-contaminated soil. J. Hazard. Mater. 286: 379-385. https://doi.org/10.1016/j.jhazmat.2015.01.010
- Xu X, Huang Q, Huang Q, Chen W. 2012. Soil microbial augmentation by an EGFP-tagged Pseudomonas putida X4 to reduce phytoavailable cadmium. Inter. Biodeter. Biodegrad. 71: 55-60. https://doi.org/10.1016/j.ibiod.2012.03.006
- Davies Jr FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158: 777-786. https://doi.org/10.1078/0176-1617-00311
- Tirry N, Joutey NT, Sayel H, Kouchou A, Bahafid W, Asri M, et al. 2018. Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. J. Genet. Eng. Biotechnol. 16: 613-619. https://doi.org/10.1016/j.jgeb.2018.06.004
- Becerra-Castro C, Monterroso C, Prieto-Fernandez A, Rodriguez-Lamas L, Loureiro-Vinas M, Acea MJ, et al. 2012. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J. Hazard. Mater. 217: 350-359. https://doi.org/10.1016/j.jhazmat.2012.03.039
- van der Wal A, de Boer W, Lubbers IM, van Veen JA. 2007. Concentration and vertical distribution of total soil phosphorus in relation to time of abandonment of arable fields. Nutr. Cycl. Agroecosystems 79: 73. https://doi.org/10.1007/s10705-007-9097-3
- Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol. Res. 188: 53-61. https://doi.org/10.1016/j.micres.2016.05.001
- Zaidi S, Musarrat J. 2004. Characterization and nickel sorption kinetics of a new metal hyper-accumulator Bacillus sp. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 39: 681-691. https://doi.org/10.1081/ESE-120027734
- Kang CH, Kwon YJ, So JS. 2016. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89: 64-69. https://doi.org/10.1016/j.ecoleng.2016.01.023
- Sharma A, Johri BN. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158: 243-248. https://doi.org/10.1078/0944-5013-00197
- Ahmad I, Akhtar MJ, Mehmood S, Akhter K, Tahir M, Saeed MF, et al. 2018. Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead. Ecotoxicol. Environ. Saf. 148: 805-812. https://doi.org/10.1016/j.ecoenv.2017.11.054
- Han H, Sheng X, Hu J, He L, Wang Q. 2018. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol. Environ. Saf. 161: 526-533. https://doi.org/10.1016/j.ecoenv.2018.06.033
- Etesami H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 147: 175-191. https://doi.org/10.1016/j.ecoenv.2017.08.032
- Alaboudi KA, Ahmed B, Brodie G. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agr. Sci. 63: 123-127. https://doi.org/10.1016/j.aoas.2018.05.007
- Yang J, Pan X, Zhao C, Mou S, Achal V, Al-Misned FA, et al. 2016. Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiol. J. 33: 261-266. https://doi.org/10.1080/01490451.2015.1068889
피인용 문헌
- Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. vol.23, pp.8, 2020, https://doi.org/10.1080/15226514.2020.1859988