References
- Sharma N, Sharma N. 2017. Microbial xylanases and their industrial applications as well as future perspectives: a review. Global J. Biol. Agric. Health Sci. 6: 5-12. https://doi.org/10.12662/2317-3076jhbs.v6i1.1442.p5-8.2018
- Valenzuela SV, Díaz P, Javier Pastor FI. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 55: 4814-4818.
-
Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, et al. 2015. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose,
$ {\alpha}-L-Araf-(1{\rightarrow}2)-[{\alpha}-L-Araf-(1{\rightarrow}3)]-D-Xylp$ , from rye arabinoxylan. Enzyme Microb. Technol. 72: 1-9. https://doi.org/10.1016/j.enzmictec.2015.02.002 - Yoon K-H. 2012. Cloning and characterization of xylanase gene from Paenibacillus woosongensis. Korean J. Microbiol. 48: 141-146. https://doi.org/10.7845/kjm.2012.48.2.141
- Sakka M, Higashi Y, Kimura T, Ratanakhanokchai K, Sakka K. 2011. Characterization of Paenibacillus curdlanolyticus B-6 Xyn10D, a xylanase that contains a family 3 carbohydrate-binding module. Appl. Environ. Microbiol. 77: 4260-4263. https://doi.org/10.1128/AEM.00226-11
- Phakeenuya V, Ratanakhanokchai K, Kosugi A, Tachaapaikoon C. 2020. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10388-3.
- Valenzuela SV, Diaz P, Pastor FIJ. 2014. Xyn11E from Paenibacillus barcinonensis BP-23: a LppX-chaperone-dependent xylanase with potential for upgrading paper pulps. Appl. Microbiol. Biotechnol. 98: 5949-5957. https://doi.org/10.1007/s00253-014-5565-2
- Valenzuela SV, Diaz P, Pastor FI. 2012. Modular glucuronoxylanspecific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 78: 3923-3931. https://doi.org/10.1128/AEM.07932-11
- Nam G-H, Jang M-U, Kim M-J, Lee J-M, Lee M-J, Kim T-J. 2016. Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis. Korean J. Microbiol. 52: 463-470. https://doi.org/10.7845/kjm.2016.6068
- Fukuda M, Watanabe S, Yoshida S, Itoh H, Itoh Y, Kamio Y, et al. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192: 2210-2219. https://doi.org/10.1128/JB.01406-09
- Watanabe S, Viet DN, Kaneko J, Kamio Y, Yoshida S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72: 951-958. https://doi.org/10.1271/bbb.70622
- Harada KM, Tanaka K, Fukuda Y, Hashimoto W, Murata K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163: 293-298. https://doi.org/10.1016/j.micres.2006.05.011
- Hagiwara Y, Mihara Y, Sakagami K, Sagara R, Bat-Erdene U, Yatsunami R, et al. 2020. Isolation of four xylanases capable of hydrolyzing corn fiber xylan from Paenibacillus sp. H2C. Biosci. Biotechnol. Biochem. 84: 640-650. https://doi.org/10.1080/09168451.2019.1693253
-
Wongratpanya K, Imjongjairak S, Waeonukul R, Sornyotha S, Phitsuwan P, Pason P, et al. 2015. Multifunctional properties of glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 including exo-
$\beta$ -xylosidase, endo-xylanase, and$\alpha$ -L-arabinofuranosidase activities. BioResour. 10: 2492-2505. - Freudl R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 17: 52. doi: 10.1186/s12934-018-0901-3.
- Tjalsma H, van Dijl JM. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5: 4472-4482. https://doi.org/10.1002/pmic.200402080
- Rusch SL, Kendall DA. 2007. Interactions that drive Sec-dependent bacterial protein transport. Biochemistry 46: 9665-9673. https://doi.org/10.1021/bi7010064
- Li R, Kibblewhite R, Orts WJ, Lee CC. 2009. Molecular cloning and characterization of multidomain xylanase from manure library World J. Microbiol. Biotechnol. 25: 2071-2078. https://doi.org/10.1007/s11274-009-0111-6
- Ogle CT, Mather WH. 2016. Proteolytic crosstalk in multi-protease networks. Phys. Biol. 13(2): 025002. https://doi.org/10.1088/1478-3975/13/2/025002
- Lee SH, Lee YE. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 1525-1535. https://doi.org/10.4014/jmb.1407.07077
- Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, et al. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624. https://doi.org/10.1271/bbb.64.2614
- Ytterberg AJ, Zubarev RA, Baumgarten T. 2019. Posttranslational targeting of a recombinant protein promotes its efficient secretion into the Escherichia coli periplasm. Appl. Environ. Microbiol. 85(13): e00671-19.
- Dalbey RE, Kuhn A. 2012. Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol. Rev. 36: 1023-1045. https://doi.org/10.1111/j.1574-6976.2012.00327.x
-
Kim DR, Lim HK, Lee KI, Hwang IT. 2016. Identification of a novel cellulose-binding domain within the endo-
$\beta$ -1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 93-94: 166-173. https://doi.org/10.1016/j.enzmictec.2016.07.014 - Bai W, Xue Y, Zhou C, Ma Y. 2015. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol. Appl. Biochem. 62: 208-217. https://doi.org/10.1002/bab.1265
- Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J. Microbiol. Biotechnol. 24: 489-496. https://doi.org/10.4014/jmb.1312.12072
-
Song HY, Lim HK, Kim DR, Lee KI, Hwang IT. 2014. A new bi-modular endo-
$\beta$ -1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 54: 1-7. https://doi.org/10.1016/j.enzmictec.2013.09.002