DOI QR코드

DOI QR Code

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli

Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석

  • Yoon, Ki-Hong (Food Science and Biotechnology Major, Woosong University)
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2020.02.20
  • Accepted : 2020.06.03
  • Published : 2020.06.28

Abstract

A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

Paenibacillus woosongensis의 xylanase 유전자를 클로닝하고 그 염기서열을 결정하였다. Xylanase 유전자는 xyn10A로 명명되었으며, 481 아미노잔기로 구성된 단백질을 코드하는 1,446개 뉴클레오티드로 구성되었다. 추론된 아미노산 배열에 따르면 Xyn10A는 glycosyl hydrolase family 10 xylanase와 상동성이 높은 활성영역과 카르복실 말단에 탄수화물을 결합하는 것으로 추정되는 영역이 포함된 다영역 효소로 확인되었다. DEAE-Sepharose와 Phenyl-Separose 컬럼 크로마토그래피 과정을 통해 P. woosongensis xyn10A 유전자를 함유한 재조합 대장균의 균체 파쇄상등액으로부터 Xyn10A를 정제하였다. 정제된 Xyn10A의 아미노 말단 배열이 GIANGSKF로 결정되었으며 이는 SignalP5.0 server로 예측된 signal peptide의 다음 아미노산 배열과 정확하게 일치하였다. 정제된 Xyn10A는 33 kDa 크기의 절단된 단백질이며 균체내 분해에 의해 카르복시 말단에서 CBM이 제거된 것으로 판단된다. 정제된 효소는 최적 pH와 온도가 6.0과 55-60℃이며 oat spelt xylan에 대한 반응 동력학적 계수 Vmax와 Km이 298.8 U/mg과 2.47 mg/ml로 각각 나타났다. 효소는 birchwood xylan이나 oat spelt xylan보다 arabinoxylan에 대한 활성이 높았으며 para-nitrophenyl-β-xylopyranoside에 대해 낮은 활성을 보였다. Xyn10A의 활성은 Cu2+, Mn2+과 SDS에 의해서 크게 저해되었으며 K+, Ni2+과 Ca2+에 의해는 상당하게 증진되었다. 또한 이 효소는 xylobiose 보다 중합도가 큰 자일로올리고당을 분해하였으며, 자일로올리고당의 최종 가수분해 산물은 xylose와 xylobiose로 확인되었다.

Keywords

References

  1. Sharma N, Sharma N. 2017. Microbial xylanases and their industrial applications as well as future perspectives: a review. Global J. Biol. Agric. Health Sci. 6: 5-12. https://doi.org/10.12662/2317-3076jhbs.v6i1.1442.p5-8.2018
  2. Valenzuela SV, Díaz P, Javier Pastor FI. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 55: 4814-4818.
  3. Imjongjairak S, Jommuengbout P, Karpilanondh P, Katsuzaki H, Sakka M, Kimura T, et al. 2015. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, $ {\alpha}-L-Araf-(1{\rightarrow}2)-[{\alpha}-L-Araf-(1{\rightarrow}3)]-D-Xylp$, from rye arabinoxylan. Enzyme Microb. Technol. 72: 1-9. https://doi.org/10.1016/j.enzmictec.2015.02.002
  4. Yoon K-H. 2012. Cloning and characterization of xylanase gene from Paenibacillus woosongensis. Korean J. Microbiol. 48: 141-146. https://doi.org/10.7845/kjm.2012.48.2.141
  5. Sakka M, Higashi Y, Kimura T, Ratanakhanokchai K, Sakka K. 2011. Characterization of Paenibacillus curdlanolyticus B-6 Xyn10D, a xylanase that contains a family 3 carbohydrate-binding module. Appl. Environ. Microbiol. 77: 4260-4263. https://doi.org/10.1128/AEM.00226-11
  6. Phakeenuya V, Ratanakhanokchai K, Kosugi A, Tachaapaikoon C. 2020. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10388-3.
  7. Valenzuela SV, Diaz P, Pastor FIJ. 2014. Xyn11E from Paenibacillus barcinonensis BP-23: a LppX-chaperone-dependent xylanase with potential for upgrading paper pulps. Appl. Microbiol. Biotechnol. 98: 5949-5957. https://doi.org/10.1007/s00253-014-5565-2
  8. Valenzuela SV, Diaz P, Pastor FI. 2012. Modular glucuronoxylanspecific xylanase with a family CBM35 carbohydrate-binding module. Appl. Environ. Microbiol. 78: 3923-3931. https://doi.org/10.1128/AEM.07932-11
  9. Nam G-H, Jang M-U, Kim M-J, Lee J-M, Lee M-J, Kim T-J. 2016. Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis. Korean J. Microbiol. 52: 463-470. https://doi.org/10.7845/kjm.2016.6068
  10. Fukuda M, Watanabe S, Yoshida S, Itoh H, Itoh Y, Kamio Y, et al. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192: 2210-2219. https://doi.org/10.1128/JB.01406-09
  11. Watanabe S, Viet DN, Kaneko J, Kamio Y, Yoshida S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72: 951-958. https://doi.org/10.1271/bbb.70622
  12. Harada KM, Tanaka K, Fukuda Y, Hashimoto W, Murata K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163: 293-298. https://doi.org/10.1016/j.micres.2006.05.011
  13. Hagiwara Y, Mihara Y, Sakagami K, Sagara R, Bat-Erdene U, Yatsunami R, et al. 2020. Isolation of four xylanases capable of hydrolyzing corn fiber xylan from Paenibacillus sp. H2C. Biosci. Biotechnol. Biochem. 84: 640-650. https://doi.org/10.1080/09168451.2019.1693253
  14. Wongratpanya K, Imjongjairak S, Waeonukul R, Sornyotha S, Phitsuwan P, Pason P, et al. 2015. Multifunctional properties of glycoside hydrolase family 43 from Paenibacillus curdlanolyticus strain B-6 including exo-$\beta$-xylosidase, endo-xylanase, and $\alpha$-L-arabinofuranosidase activities. BioResour. 10: 2492-2505.
  15. Freudl R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 17: 52. doi: 10.1186/s12934-018-0901-3.
  16. Tjalsma H, van Dijl JM. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5: 4472-4482. https://doi.org/10.1002/pmic.200402080
  17. Rusch SL, Kendall DA. 2007. Interactions that drive Sec-dependent bacterial protein transport. Biochemistry 46: 9665-9673. https://doi.org/10.1021/bi7010064
  18. Li R, Kibblewhite R, Orts WJ, Lee CC. 2009. Molecular cloning and characterization of multidomain xylanase from manure library World J. Microbiol. Biotechnol. 25: 2071-2078. https://doi.org/10.1007/s11274-009-0111-6
  19. Ogle CT, Mather WH. 2016. Proteolytic crosstalk in multi-protease networks. Phys. Biol. 13(2): 025002. https://doi.org/10.1088/1478-3975/13/2/025002
  20. Lee SH, Lee YE. 2014. Cloning and characterization of a multidomain GH10 xylanase from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 24: 1525-1535. https://doi.org/10.4014/jmb.1407.07077
  21. Feng JX, Karita S, Fujino E, Fujino T, Kimura T, Sakka K, et al. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624. https://doi.org/10.1271/bbb.64.2614
  22. Ytterberg AJ, Zubarev RA, Baumgarten T. 2019. Posttranslational targeting of a recombinant protein promotes its efficient secretion into the Escherichia coli periplasm. Appl. Environ. Microbiol. 85(13): e00671-19.
  23. Dalbey RE, Kuhn A. 2012. Protein traffic in Gram-negative bacteria--how exported and secreted proteins find their way. FEMS Microbiol. Rev. 36: 1023-1045. https://doi.org/10.1111/j.1574-6976.2012.00327.x
  24. Kim DR, Lim HK, Lee KI, Hwang IT. 2016. Identification of a novel cellulose-binding domain within the endo-$\beta$-1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 93-94: 166-173. https://doi.org/10.1016/j.enzmictec.2016.07.014
  25. Bai W, Xue Y, Zhou C, Ma Y. 2015. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol. Appl. Biochem. 62: 208-217. https://doi.org/10.1002/bab.1265
  26. Zheng HC, Sun MZ, Meng LC, Pei HS, Zhang XQ, Yan Z, et al. 2014. Purification and characterization of a thermostable xylanase from Paenibacillus sp. NF1 and its application in xylooligosaccharides production. J. Microbiol. Biotechnol. 24: 489-496. https://doi.org/10.4014/jmb.1312.12072
  27. Song HY, Lim HK, Kim DR, Lee KI, Hwang IT. 2014. A new bi-modular endo-$\beta$-1,4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus terrae HPL-003. Enzyme Microb. Technol. 54: 1-7. https://doi.org/10.1016/j.enzmictec.2013.09.002