References
- Chen L, Li J, Fan L. 2017. The nutritional composition of maca in hypocotyls (Lepidium meyenii Walp.) cultivated in different regions of China. J. Food Qual. 2017: 1-8.
- Zhou Y, Li P, Brantner A, Wang H, Shu X, Yang J, et al. 2017. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Sci. Rep. 7: 44660. https://doi.org/10.1038/srep44660
- Tang W, Jin L, Xie L, Huang J, Wang N, Chu B, et al. 2017. Structural characterization and antifatigue effect in vivo of maca (Lepidium meyenii Walp) polysaccharide. J. Food Sci. 82: 757-764. https://doi.org/10.1111/1750-3841.13619
- McCollom MM, Villinski JR, McPhail KL, Craker LE, Gafner S. 2005. Analysis of macamides in samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochem. Anal. 16: 463-469. https://doi.org/10.1002/pca.871
- Zhang L, Li G, Wang S, Yao W, Zhu F. 2017. Physicochemical properties of maca starch. Food Chem. 218: 56-63. https://doi.org/10.1016/j.foodchem.2016.08.123
- Chen J-J, Zhao Q-S, Liu Y-I, Gong P-F, Cao L-L, Wang X-D, et al. 2017. Macamides present in the commercial maca (Lepidium meyenii) products and the macamide biosynthesis affected by postharvest conditions. Int. J. Food Prop. 20: 3112-3123. https://doi.org/10.1080/10942912.2016.1274905
- Chain FE, Grau A, Martins J, Catalan CAN. 2014. Macamides from wild Maca, Lepidium meyenii Walpers (Brassicaceae). Phytochem. Lett. 8: 145-148. https://doi.org/10.1016/j.phytol.2014.03.005
- Xia C, Deng J, Chen J, Zhu Y, Song Y, Zhang Y, et al. 2019. Simultaneous determination of macaenes and macamides in maca using an HPLC method and analysis using a chemometric method (HCA) to distinguish maca origin. Rev. Bras. Farmacogn. 6: 702-709.
- Chen S-X, Li K-K, Pubu D, Jiang S-P, Chen B, Chen L-R, et al. 2017. Optimization of ultrasound-assisted extraction, HPLC and UHPLC-Q-TOF-MS/MS analysis of main macamides and macaenes from maca (Cultivars of Lepidium meyenii Walp). Molecules 22: 2196. https://doi.org/10.3390/molecules22122196
- Berlowski A, Zawada K, Wawer I, Paradowska K. 2013. Antioxidant properties of medicinal plants from Peru. Food Nutr. Sci. 4: 71-77.
- Li J, Chen L, Li J, Duan Z, Zhu S, Fan L. 2017. The composition analysis of Maca (Lepidium meyenii Walp.) from xinjiang and its antifatigue activity. J. Food Qual. 2017: 2904951.
- Wang S, Zhu F. 2019. Chemical composition and health effects of maca (Lepidium meyenii). Food Chem. 288: 422-443. https://doi.org/10.1016/j.foodchem.2019.02.071
- Rodriguez-Huaman A, Casimiro-Gonzales S, Chavez-Perez JA, Gonzales-Arimborgo C, Cisneros-Fernandez R, Aguilar-Mendoza LA, et al. 2016. Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells. Toxicol. Mech. Methods 27: 279-285. https://doi.org/10.1080/15376516.2016.1275908
- Choi EH, Kang JI, Cho JY, Lee SH, Kim TS, Yeo IH, et al. 2012. Supplementation of standardized lipid-soluble extract from maca (Lepidium meyenii) increases swimming endurance capacity in rats. J. Funct. Foods 4: 568-573. https://doi.org/10.1016/j.jff.2012.03.002
- Li S, Hao L, Kang Q, Cui Y, Jiang H, Liu X. 2017. Purification, characterization and biological activities of a polysaccharide from Lepidium meyenii leaves. Int. J. Biol. Macromol. 103: 1302-1310. https://doi.org/10.1016/j.ijbiomac.2017.05.165
- Tang W, Jin L, Xie L, Huang J, Wang N, Chu B, et al. 2017. Structural characterization and antifatigue effect in vivo of maca (Lepidium meyenii Walp) polysaccharide. J. Food Sci. 82: 757-764. https://doi.org/10.1111/1750-3841.13619
- Zhang Y, Liu C, Qi Y, Li S, Pan Y, Li Y. 2015. Circulating ultrasound-assisted extraction, countercurrent chromatography, and liquid chromatography for the simultaneous extraction, isolation, and analysis of the constituents of Uncaria tomentosa. J. Chromatogr. A. 1388: 36-42. https://doi.org/10.1016/j.chroma.2015.02.028
- Chavan Y, Singhal RS. 2013. Ultrasound-assisted extraction (UAE) of bioactives from arecanut (Areca catechu L.) and optimization study using response surface methodology. Innov. Food Sci. Emerg. 17: 106-113. https://doi.org/10.1016/j.ifset.2012.10.001
- Lo KM, Cheung PCK. 2005. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem. 89: 533-539. https://doi.org/10.1016/j.foodchem.2004.03.006
- Hwang ES, Thi ND. 2014. Antioxidant contents and antioxidant activities of hot-water extracts of aronia (Aronia melancocarpa) with different drying methods. Korean J. Food Sci. Technol. 46: 303-308. https://doi.org/10.9721/KJFST.2014.46.3.303
- Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28: 25-30.
- Wang KJ, Zhang YJ, Yang CR. 2005. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J. Ethnopharmacol. 96: 483-487. https://doi.org/10.1016/j.jep.2004.09.036
- Lee YK, Chang YH. 2019. Physicochemical and antioxidant properties of methanol extract from Maca (Lepidium meyenii Walp.) leaves and roots. Food Sci. Technol. 39: 278-286. https://doi.org/10.1590/fst.03818
- Iris F, Benzie F, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
- Lee MH, Jang MH, Kim EK, Han SW, Cho SY, Kim CJ. 2005. Nitric oxide induces apoptosis in mouse C2C12 myoblast cells. J. Pharmacol. Sci. 97: 369-376. https://doi.org/10.1254/jphs.FPJ04017X
- Bosutti A, Degens H. 2015. The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci. Rep. 5: 8093. https://doi.org/10.1038/srep08093
- Kwon Y-S, Jeon In-S, Hwang J-H, Lim D-M, Kang Y-S, Chung H-J. 2009. Biological activities of maca (Lepidium meyenii) extracts. J. Korean Soc. Food Sci. Nutr. 38: 817-823. https://doi.org/10.3746/jkfn.2009.38.7.817
- Park S-J, Kwon S-P, Rha Y-A. 2017. Enhanacement of antioxidant activities of Crataegus pinnatifida bunge fruit by ultrasonification extraction processes. J. Korean Soc. Food Sci. Nutr. 46: 891-895. https://doi.org/10.3746/jkfn.2017.46.7.891
- Park S-J, Kim O-L, Rha Y-A. 2017. Component analysis and antioxidant activity of Maca. Culi. Sci. Hos. Res. 23: 137-144. https://doi.org/10.20878/cshr.2017.23.3.013013013
- Sandoval M, Okuhama NN, Angeles FM, Melchor VV, Condezo LA, Lao J, et al. 2002. Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem. 79: 207-213. https://doi.org/10.1016/S0308-8146(02)00133-4
- Gan J, Feng Y, He Z, Li X, Zhang H. 2017. Correlations between antioxidant activity and alkaloids and phenols of maca (Lepidium meyenii). J. Food Qual. 2017: 3185945.
- Caicai K, Limin H, Liming Z, Zhiqiang Z, Yongwu Y. 2018. Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium meyenii). Int. J. Biol. Macromol. 107: 2611-2619. https://doi.org/10.1016/j.ijbiomac.2017.10.139
- Droge W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95. https://doi.org/10.1152/physrev.00018.2001
- Bergamini CM, Gambetti S, Dondi A, Cervellati C. 2004. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 10: 1611-1626. https://doi.org/10.2174/1381612043384664
-
Siu PM, Wang Y, Alway SE. 2009. Apoptotic signaling induced by
$H_2O_2$ -mediated oxidative stress in differentiated C2C12 myotubes. Life Sci. 84: 468-481. https://doi.org/10.1016/j.lfs.2009.01.014 - Perry CG, Heigenhauser GJ, Bonen A, Spriet LL. 2008. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 33: 1112-1123. https://doi.org/10.1139/H08-097
- Ydfors M, Hughes MC, Laham R, Schlattner U, Norrbom J, Perry CG. 2016. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise. J. Physiol. 594: 3127-3140. https://doi.org/10.1113/JP271259
- An H, Seo S, Sim K, Kim J, Kim E, Lee M, et al. 2006. Antifatigue effect of chlorella vulgaris in mice. Korean J. Food Nutr. 19: 169-175.
- Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, et al. 2010. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. J. Ethnopharmacol. 130: 421-423. https://doi.org/10.1016/j.jep.2010.05.027
-
Xu C, Lv J, Lo YM, Cui SW, Hu X, Fan M. 2013. Effects of oat
$\beta$ -glucan on endurance exercise and its anti-fatigue properties in trained rats. Carbohydr. Polym. 92: 1159-1165. https://doi.org/10.1016/j.carbpol.2012.10.023 - Huang Y, Wang Y, Li W, Zhan J, Lei J, Li N, et al. 2019. Evaluation of anti-fatigue property of Porphyridium cruentum in mice. Trop. J. Pharm. Res. 18: 579-584.
- Yang Q, Jin W, Lv X, Dai P, Ao Y, Wu M, et al. 2016. Effects of macamides on endurance capacity and anti-fatigue property in prolonged swimming mice. Pharm. Biol. 54: 827-834. https://doi.org/10.3109/13880209.2015.1087036
- Li J, Sun Q, Meng Q, Wang L, Xiong W, Zhang L. 2017. Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp (maca). Int. J. Biol. Macromol. 95: 1305-1311. https://doi.org/10.1016/j.ijbiomac.2016.11.031
- Tang W, Jin L, Xie L, Huang J, Wang N, Chu B, et al. 2017. Structural characterization and antifatigue effect in vivo of maca (Lepidium meyenii Walp) polysaccharide. J. Food Sci. 82: 757-764. https://doi.org/10.1111/1750-3841.13619