DOI QR코드

DOI QR Code

Comparison of Ethanol Yield Coefficients Using Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus Adapted to High Concentrations of Galactose with Gracilaria verrucosa as Substrate

  • Park, Yurim (Department of Biotechnology, Pukyong National University) ;
  • Sunwoo, In Yung (Department of Biotechnology, Pukyong National University) ;
  • Yang, Jiwon (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Teak (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2020.02.11
  • Accepted : 2020.03.15
  • Published : 2020.06.28

Abstract

The red seaweed Gracilaria verrucosa has been used for the production of bioethanol. Pretreatment for monosaccharide production was carried out with 12% (w/v) G. verrucosa slurry and 500 mM HNO3 at 121℃ for 90 min. Enzymatic hydrolysis was performed with a mixture of commercial enzymes (Cellic C-Tec 2 and Celluclast 1.5 L; 16 U/ml) at 50℃ and 150 rpm for 48 h. G. verrucosa was composed of 66.9% carbohydrates. In this study, 61.0 g/L monosaccharides were obtained from 120.0 g dw/l G. verrucosa. The fermentation inhibitors such as hydroxymethylfurfural (HMF), levulinic acid, and formic acid were produced during pretreatment. Activated carbon was used to remove HMF. Wild-type and adaptively evolved Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus were used for fermentation to evaluate ethanol production.

Keywords

References

  1. Kumar S, Gupta R, Kumar G, Kuhad D, Chander R. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
  2. Binod P, Gnansounou E, Sindhu R, Pandey A. 2019. Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour. Technol. Rep. 5: 317-325. https://doi.org/10.1016/j.biteb.2018.06.005
  3. Melo MRS, Feitosa JPA, Freitas ALP, Paula RCM De. 2002. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 49: 491-498. https://doi.org/10.1016/S0144-8617(02)00006-1
  4. Ramachandra T V, Hebbale D. 2020. Bioethanol from macroalgae: Prospects and challenges. Renew. Sust. Energ. Rev. 117: 109479. https://doi.org/10.1016/j.rser.2019.109479
  5. Sukwong P, Sunwoo IY, Lee MJ, Ra CH, Jeong GT, Kim SK. 2018. Application of the severity factor and HMF removal of red macroalgae Gracilaria verrucosa to production of bioethanol by Pichia stipitis and Kluyveromyces marxianus with adaptive evolution. Appl. Biochem. Biotechnol. 187: 1312-1327.
  6. Sunwoo IY, Ra CH, Jeong GT, Kim SK. 2016. Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds. Bioprocess Biosyst. Eng. 39: 915-923. https://doi.org/10.1007/s00449-016-1571-3
  7. Ra CH, Jung JH, Sunwoo IY, Kang CH, Jeong GT, Kim SK. 2015. Detoxification of Eucheuma spinosum hydrolysates with activated carbon for ethanol production by the salt-tolerant yeast Candida tropicalis. J. Microbiol. Biotechnol. 25: 856-862. https://doi.org/10.4014/jmb.1409.09038
  8. Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H. 2015. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 68: 107-116. https://doi.org/10.1016/j.egypro.2015.03.238
  9. El Harchi M, Fakihi Kachkach FZ, El Mtili N. 2018. Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S. Afr. J. Bot. 115: 161-169. https://doi.org/10.1016/j.sajb.2018.01.021
  10. Sunwoo IY, Nguyen TH, Ra CH, Jeong GT, Kim SK. 2018. Acetone-Butanol-Ethanol production from waste seaweed collected from Gwangalli beach, Busan, Korea, based on pH-controlled and sequential fermentation using two strains. Appl. Biochem. Biotechnol. 185: 1075-1087. https://doi.org/10.1007/s12010-018-2711-9
  11. Lan TQ, Lou H, Zhu JY. 2013. Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.2-6.2. Bioenerg. Res. 6: 476-485. https://doi.org/10.1007/s12155-012-9273-4
  12. Jol CN, Neiss TG, Penninkhof B, De Ruiter GA. 1999. A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal. Biochem. 268: 213-222. https://doi.org/10.1006/abio.1998.3059
  13. Nguyen TH, Ra CH, Sunwoo IY, Sukwong P, Jeong GT, Kim SK. 2017. Bioethanol production from soybean residue via separate hydrolysis and fermentation. Appl. Biochem. Biotechnol. 184: 513-523. https://doi.org/10.1007/s12010-017-2565-6
  14. Ra CH, Kim SK. 2013. Optimization of pretreatment conditions and use of a two-stage fermentation process for the production of ethanol from seaweed, Saccharina japonica. Biotechnol. Bioprocess Eng. 18: 715-720. https://doi.org/10.1007/s12257-013-0019-8
  15. Yoo CG, Lee CW, Kim TH. 2011. Optimization of two-stage fractionation process for lignocellulosic biomass using response surface methodology (RSM). Biomass Bioeneergy 35: 4901-4909. https://doi.org/10.1016/j.biombioe.2011.10.015
  16. Farkas C, Rezessy-Szabo JM, Gupta VK, Truong DH, Friedrich L, Friedrich J, et al. 2019. Microbial saccharification of wheat bran for bioethanol fermentation. J. Clean Prod. 240: 118269. https://doi.org/10.1016/j.jclepro.2019.118269
  17. Kumar V, Yadav SK, Kumar J, Ahluwalia V. 2020. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour. Technol. 299: 122633. https://doi.org/10.1016/j.biortech.2019.122633
  18. Demiray E, Ertugrul Karatay S, Donmez G. 2019. Efficient bioethanol production from pomegranate peels by newly isolated Kluyveromyces marxianus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 42: 709-718.
  19. Vazquez BC, Roa-morales G, Natividad R, Balderas-hernandez P, Saucedo-luna J. 2006. Thermal hydrolysis of orange peel and its fermentation with alginate beads to produce ethanol. BioResources 12: 2955-2964.
  20. Kim I, Lee B, Park JY, Choi SA, Han JI. 2014. Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr. Polym. 99: 563-567. https://doi.org/10.1016/j.carbpol.2013.08.092
  21. Resch MG, Donohoe BS, Baker JO, Decker SR, Beck EA, Beckham GT, et al. 2013. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6: 1858-1867. https://doi.org/10.1039/c3ee00019b
  22. Stevant P, Rebours C, Chapman A. 2017. Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquac. Int. 25: 1373-1390. https://doi.org/10.1007/s10499-017-0120-7