References
- Bonnefond H, Moelants N, Talec A, Bernard O, Sciandra A. 2016. Concomitant effects of light and temperature diel variations on the growth rate and lipid production of Dunaliella salina. Alga. Res. 14: 72-78. https://doi.org/10.1016/j.algal.2015.12.018
- Bonnefond H, Moelants N, Talec A, Mayzaud P, Bernard O, Sciandra A. 2017. Coupling and uncoupling of triglyceride and betacarotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol. Biofuels. 10: 25. https://doi.org/10.1186/s13068-017-0713-4
- Gong M, Bassi A. 2016. Carotenoids from microalgae: a review of recent developments. Biotechnol. Adv. 34: 1396-1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
-
Chekanov K, Schastnaya E, Solovchenko A, Lobakova E. 2017. Effects of
$CO_2$ enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. J. Photochem. Photobiol. B. 171: 58-66. https://doi.org/10.1016/j.jphotobiol.2017.04.028 - Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412. https://doi.org/10.1007/s10811-005-8701-7
- Posten C. 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9: 165-177. https://doi.org/10.1002/elsc.200900003
- Kim GY, Heo J, Kim HS, Han JI. 2017. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. Bioresour Technol. 237: 72-77. https://doi.org/10.1016/j.biortech.2017.04.009
- Kim J, Lee JY, Lu T. 2014. Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem. Eng. J. 82: 34-40. https://doi.org/10.1016/j.bej.2013.11.007
- Srinivasan R, Kumar VA, Kumar D, Ramesh N, Babu S. 2015. Gothandam KM, Effect of Dissolved Inorganic Carbon on beta- Carotene and Fatty Acid Production in Dunaliella sp. Appl. Biochem. Biotechnol. 175: 2895-2906. https://doi.org/10.1007/s12010-014-1461-6
- Zhu C, Zhu H, Cheng L, Chi Z. 2017. Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor. J. Appl. Phycol. 30: 875-885. https://doi.org/10.1007/s10811-017-1285-1
- Saha SK, Moane S, Murray P. 2013. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour. Technol. 147: 23-28. https://doi.org/10.1016/j.biortech.2013.08.022
- Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, et al. 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci. Rep. 8: 6972. https://doi.org/10.1038/s41598-018-25417-5
- Fachet M, Hermsdorf D, Rihko-Struckmann L, Sundmacher K. 2016. Flow cytometry enables dynamic tracking of algal stress response: a case study using carotenogenesis in Dunaliella salina. Algal. Res. 13: 227-234. https://doi.org/10.1016/j.algal.2015.11.014
- Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162: 21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
-
Xupeng Cao, Yimei Xi, Jiao Liu, Yadong Chu, Peichun Wu, Miao Yang, et al. 2019. New insights into the
$CO_2$ -steady and pH-steady cultivations of two microalgae based on continuous online parameter monitoring. Algal Res. 38: 101370. https://doi.org/10.1016/j.algal.2018.11.021 - Fazeli MR, Tofighi H, Madadkar-Sobhani A, Shahverdi AR, Nejad-Sattari T, Mirzaie S, et al. 2009. Nicotine inhibition of lycopene cyclase enhances accumulation of carotenoid intermediates by Dunaliella salina CCAP 19/18. Eur. J. Phycol. 44: 215-220. https://doi.org/10.1080/09670260802578526
- Chi L, Yao C, Cao X, Xue S. 2016. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis. Bioresour. Technol. 200: 598-605. https://doi.org/10.1016/j.biortech.2015.10.059
- Meng Y, Jiang J, Wang H, Cao X, Xue S, Yang Q, et al. 2015. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour. Technol. 179: 483-489. https://doi.org/10.1016/j.biortech.2014.12.012
-
Mojaat M, Pruvost J, Foucault A, Legrand J. Effect of organic carbon sources and
$Fe^{2+}$ ions on growth and beta-carotene accumulation by Dunaliella salina. Biochem. Eng. J. 39: 177-184. https://doi.org/10.1016/j.bej.2007.09.009 - Lamers PP et al. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106: 638-648. https://doi.org/10.1002/bit.22725
- Md. Abu Affan, Lee DW, Jeon SM, Noh JH, Heo SJ, Oh CH, et al. 2015. Bituminous coal and soium hydroxide-pretreated seawater stimulates Spirulina (Arthrospira) maxima growth with decreased production costs. Aquaculture 436: 121-126. https://doi.org/10.1016/j.aquaculture.2014.10.036
- Besson A, Guiraud P. 2013. High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresour. Technol. 147: 464-470. https://doi.org/10.1016/j.biortech.2013.08.053
- Zhu C, Zhai X, Chi Z. 2018. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce beta-carotene. Algal Res. 35: 319-324. https://doi.org/10.1016/j.algal.2018.08.035
- Chen XH, Zhang C, Tan LJ, Wang JT. 2018. Toxicity of Co nanoparticles on three species of marine microalgae. Environ. Sci.Pollut. R. 236: 454-461. https://doi.org/10.1016/j.envpol.2018.01.081
- Mei L, Qin Z, Hu C-W, Li C, Liu Z-L, Kong Z-M. 2007. Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J. Environ. Sci. 19: 1330-1335. https://doi.org/10.1016/S1001-0742(07)60217-4
- Chen WL, Harris DL, Joyce NC. 2005. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells. Exp.Eye Res. 81: 570-580. https://doi.org/10.1016/j.exer.2005.03.015
- Du Z-D, Hu L-T, Hu Y-T, Ma Z-Z. 2010. The effects of sodium orthovanadate-induced phosphatase inhibition on rat retinal pigment epithelium cell activity. Cutan. Ocul. Toxicol. 29: 261-268. https://doi.org/10.3109/15569527.2010.509851
- Tran NP, Park JK, Kim ZH, Lee CG. 2009. Influence of sodium orthovanadate on the production of nastaxathin from green algae Haematococcus lacustris. Biotechnol. Bioproc. E. 14: 322-329. https://doi.org/10.1007/s12257-008-0216-z
-
Ying K, James Gilmour D, Zimmerman WB. 2014. Effects of
$CO_2$ and pH on Growth of the Microalga Dunaliella salina. J. Microb. Biochem. Technol. 6: 167-173. - Liu W, Ming Y, Li P, Huang Z. 2012. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiol. Biochem. 54: 43-48. https://doi.org/10.1016/j.plaphy.2012.01.018
- Zheng Z, Gao S, Hee Y, Li Z, Li Y, Cai X, et al. 2017. The enhancement of the oxidative pentose phosphate pathway maybe involved in resolving imbalance between photosystem I and II in Dunaliella salina. Algal Res. 26: 402-408. https://doi.org/10.1016/j.algal.2017.07.024
Cited by
- CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18 vol.11, pp.1, 2020, https://doi.org/10.1186/s13568-021-01242-4
- Reuse of sea water reverse osmosis brine to produce Dunaliella salina based β-carotene as a valuable bioproduct: A circular bioeconomy perspective vol.302, pp.no.pa, 2022, https://doi.org/10.1016/j.jenvman.2021.114024