DOI QR코드

DOI QR Code

β-Carotene Production from Dunaliella salina Cultivated with Bicarbonate as Carbon Source

  • Xi, Yimei (School of Bioengineering, Dalian University of Technology) ;
  • Wang, Jinghan (School of Bioengineering, Dalian University of Technology) ;
  • Xue, Song (School of Bioengineering, Dalian University of Technology) ;
  • Chi, Zhanyou (School of Bioengineering, Dalian University of Technology)
  • Received : 2019.10.16
  • Accepted : 2020.03.10
  • Published : 2020.06.28

Abstract

Bicarbonate has been considered as a better approach for supplying CO2 to microalgae cells microenvironments than gas bubbling owing to cost-effectiveness and easy operation. However, the β-carotene production was too low in Dunaliella salina cultivated with bicarbonate in previous studies. Also, the difference in photosynthetic efficiency between these two carbon sources (bicarbonate and CO2) has seldom been discussed. In this study, the culture conditions, including NaHCO3, Ca2+, Mg2+ and microelement concentrations, were optimized when bicarbonate was used as carbon source. Under optimized condition, a maximum biomass concentration of 0.71 g/l and corresponding β-carotene content of 4.76% were obtained, with β-carotene yield of 32.0 mg/l, much higher than previous studies with NaHCO3. Finally, these optimized conditions with bicarbonate were compared with CO2 bubbling by online monitoring. There was a notable difference in Fv/Fm value between cultivations with bicarbonate and CO2, but there was no difference in the Fv/Fm periodic changing patterns. This indicates that the high concentration of NaHCO3 used in this study served as a stress factor for β-carotene accumulation, although high productivity of biomass was still obtained.

Keywords

References

  1. Bonnefond H, Moelants N, Talec A, Bernard O, Sciandra A. 2016. Concomitant effects of light and temperature diel variations on the growth rate and lipid production of Dunaliella salina. Alga. Res. 14: 72-78. https://doi.org/10.1016/j.algal.2015.12.018
  2. Bonnefond H, Moelants N, Talec A, Mayzaud P, Bernard O, Sciandra A. 2017. Coupling and uncoupling of triglyceride and betacarotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol. Biofuels. 10: 25. https://doi.org/10.1186/s13068-017-0713-4
  3. Gong M, Bassi A. 2016. Carotenoids from microalgae: a review of recent developments. Biotechnol. Adv. 34: 1396-1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
  4. Chekanov K, Schastnaya E, Solovchenko A, Lobakova E. 2017. Effects of $CO_2$ enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. J. Photochem. Photobiol. B. 171: 58-66. https://doi.org/10.1016/j.jphotobiol.2017.04.028
  5. Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412. https://doi.org/10.1007/s10811-005-8701-7
  6. Posten C. 2009. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 9: 165-177. https://doi.org/10.1002/elsc.200900003
  7. Kim GY, Heo J, Kim HS, Han JI. 2017. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. Bioresour Technol. 237: 72-77. https://doi.org/10.1016/j.biortech.2017.04.009
  8. Kim J, Lee JY, Lu T. 2014. Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem. Eng. J. 82: 34-40. https://doi.org/10.1016/j.bej.2013.11.007
  9. Srinivasan R, Kumar VA, Kumar D, Ramesh N, Babu S. 2015. Gothandam KM, Effect of Dissolved Inorganic Carbon on beta- Carotene and Fatty Acid Production in Dunaliella sp. Appl. Biochem. Biotechnol. 175: 2895-2906. https://doi.org/10.1007/s12010-014-1461-6
  10. Zhu C, Zhu H, Cheng L, Chi Z. 2017. Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor. J. Appl. Phycol. 30: 875-885. https://doi.org/10.1007/s10811-017-1285-1
  11. Saha SK, Moane S, Murray P. 2013. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresour. Technol. 147: 23-28. https://doi.org/10.1016/j.biortech.2013.08.022
  12. Srinivasan R, Mageswari A, Subramanian P, Suganthi C, Chaitanyakumar A, Aswini V, et al. 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Sci. Rep. 8: 6972. https://doi.org/10.1038/s41598-018-25417-5
  13. Fachet M, Hermsdorf D, Rihko-Struckmann L, Sundmacher K. 2016. Flow cytometry enables dynamic tracking of algal stress response: a case study using carotenogenesis in Dunaliella salina. Algal. Res. 13: 227-234. https://doi.org/10.1016/j.algal.2015.11.014
  14. Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162: 21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
  15. Xupeng Cao, Yimei Xi, Jiao Liu, Yadong Chu, Peichun Wu, Miao Yang, et al. 2019. New insights into the $CO_2$-steady and pH-steady cultivations of two microalgae based on continuous online parameter monitoring. Algal Res. 38: 101370. https://doi.org/10.1016/j.algal.2018.11.021
  16. Fazeli MR, Tofighi H, Madadkar-Sobhani A, Shahverdi AR, Nejad-Sattari T, Mirzaie S, et al. 2009. Nicotine inhibition of lycopene cyclase enhances accumulation of carotenoid intermediates by Dunaliella salina CCAP 19/18. Eur. J. Phycol. 44: 215-220. https://doi.org/10.1080/09670260802578526
  17. Chi L, Yao C, Cao X, Xue S. 2016. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis. Bioresour. Technol. 200: 598-605. https://doi.org/10.1016/j.biortech.2015.10.059
  18. Meng Y, Jiang J, Wang H, Cao X, Xue S, Yang Q, et al. 2015. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour. Technol. 179: 483-489. https://doi.org/10.1016/j.biortech.2014.12.012
  19. Mojaat M, Pruvost J, Foucault A, Legrand J. Effect of organic carbon sources and $Fe^{2+}$ ions on growth and beta-carotene accumulation by Dunaliella salina. Biochem. Eng. J. 39: 177-184. https://doi.org/10.1016/j.bej.2007.09.009
  20. Lamers PP et al. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106: 638-648. https://doi.org/10.1002/bit.22725
  21. Md. Abu Affan, Lee DW, Jeon SM, Noh JH, Heo SJ, Oh CH, et al. 2015. Bituminous coal and soium hydroxide-pretreated seawater stimulates Spirulina (Arthrospira) maxima growth with decreased production costs. Aquaculture 436: 121-126. https://doi.org/10.1016/j.aquaculture.2014.10.036
  22. Besson A, Guiraud P. 2013. High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina. Bioresour. Technol. 147: 464-470. https://doi.org/10.1016/j.biortech.2013.08.053
  23. Zhu C, Zhai X, Chi Z. 2018. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce beta-carotene. Algal Res. 35: 319-324. https://doi.org/10.1016/j.algal.2018.08.035
  24. Chen XH, Zhang C, Tan LJ, Wang JT. 2018. Toxicity of Co nanoparticles on three species of marine microalgae. Environ. Sci.Pollut. R. 236: 454-461. https://doi.org/10.1016/j.envpol.2018.01.081
  25. Mei L, Qin Z, Hu C-W, Li C, Liu Z-L, Kong Z-M. 2007. Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J. Environ. Sci. 19: 1330-1335. https://doi.org/10.1016/S1001-0742(07)60217-4
  26. Chen WL, Harris DL, Joyce NC. 2005. Effects of SOV-induced phosphatase inhibition and expression of protein tyrosine phosphatases in rat corneal endothelial cells. Exp.Eye Res. 81: 570-580. https://doi.org/10.1016/j.exer.2005.03.015
  27. Du Z-D, Hu L-T, Hu Y-T, Ma Z-Z. 2010. The effects of sodium orthovanadate-induced phosphatase inhibition on rat retinal pigment epithelium cell activity. Cutan. Ocul. Toxicol. 29: 261-268. https://doi.org/10.3109/15569527.2010.509851
  28. Tran NP, Park JK, Kim ZH, Lee CG. 2009. Influence of sodium orthovanadate on the production of nastaxathin from green algae Haematococcus lacustris. Biotechnol. Bioproc. E. 14: 322-329. https://doi.org/10.1007/s12257-008-0216-z
  29. Ying K, James Gilmour D, Zimmerman WB. 2014. Effects of $CO_2$ and pH on Growth of the Microalga Dunaliella salina. J. Microb. Biochem. Technol. 6: 167-173.
  30. Liu W, Ming Y, Li P, Huang Z. 2012. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiol. Biochem. 54: 43-48. https://doi.org/10.1016/j.plaphy.2012.01.018
  31. Zheng Z, Gao S, Hee Y, Li Z, Li Y, Cai X, et al. 2017. The enhancement of the oxidative pentose phosphate pathway maybe involved in resolving imbalance between photosystem I and II in Dunaliella salina. Algal Res. 26: 402-408. https://doi.org/10.1016/j.algal.2017.07.024

Cited by

  1. CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18 vol.11, pp.1, 2020, https://doi.org/10.1186/s13568-021-01242-4
  2. Reuse of sea water reverse osmosis brine to produce Dunaliella salina based β-carotene as a valuable bioproduct: A circular bioeconomy perspective vol.302, pp.no.pa, 2022, https://doi.org/10.1016/j.jenvman.2021.114024