DOI QR코드

DOI QR Code

지진하중을 받은 구조물의 유전알고리즘 기반 강성저하 및 보강 효과 추정

Use of a Genetic Algorithm to Predict the Stiffness Reductions and Retrofitting Effects on Structures Subjected to Seismic Loads

  • 이재훈 ((주)한국시설안전연구원) ;
  • 안광식 (안동대학교 지진방재공학과) ;
  • 이상열 (안동대학교 토목공학과)
  • Lee, Jae-Hun (Korea Infrastructure Safety Research Institute) ;
  • Ahn, Kwang-Sik (Department of Earthquake and Disaster Prevention Engineering, Andong National Univ) ;
  • Lee, Sang-Youl (Department of Civil Engineering, Andong National Univ.)
  • 투고 : 2020.03.27
  • 심사 : 2020.04.02
  • 발행 : 2020.06.30

초록

본 논문은 유한요소법과 유전알고리즘을 연동하여 지진하중을 받는 구조물의 강성저하(손상) 및 보강 후 효과를 추정하는 방법을 다루었다. 본 연구의 독창성은 지진하중을 적용하였고, 그 응답으로부터 구조물의 미지 변수를 추정한다는 점이다. 본 연구에서 제안한 방법은 지진하중으로부터 손상된 부위를 추정할 뿐 아니라, 그 위치와 정도를 규명할 수 있다. 제안한 방법을 검증하기 위하여 El Centro 및 포항 지진하중을 적용하여 저층 뼈대구조물와 트러스 교량을 대상으로 알고리즘을 실행하였다. 수치해석 예제는 제안한 방법이 수치해석적인 효율성 뿐 아니라 지진으로부터의 심각한 피해를 예방하는 데 적용할 수 있음을 보여주었다.

This study examines a method for identifying stiffness reductions in structures subjected to seismic loads and retrofitting effects using a combination of the finite element method and an advanced genetic algorithm. The novelty of this study is the application of seismic loading and its response to anomalies in the tested structure. The technique described in this study may enable not only detection of damaged elements but also the identification of their locations and the extent of damage due to seismic loading. To demonstrate the feasibility of the method, the advanced genetic algorithm is applied to frame and truss bridge structures subjected to El Centro and Pohang seismic loads. The results reveal the excellent computational efficiency of the method and its ability to prevent severe damage from earthquakes.

키워드

참고문헌

  1. Cazacu R., Grama L. (2014) Steel Truss Optimization Using Genetic Algorithms and FEA, Proc. Technol., 12, pp.339-346. https://doi.org/10.1016/j.protcy.2013.12.496
  2. Chandrashekhar, M., Ganguli, R. (2009) Optimal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm, Struct. Health Monit., 8, pp.267-282. https://doi.org/10.1177/1475921708102088
  3. Han, T.Y. (2010) A Study of ILM Bridge Optimization using Genetic Algorithms, Mater Thesis, Mokpo National Maritime University.
  4. Lee, K.S., Jung, Y.S. (2009) Optimal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm, J. Korean Soc. Steel Constr., 21, pp.361-373.
  5. Lee, S.Y., Kim, G.D. (2018) Micromechanical Damage Identification of Vibrating Laminated Composites Using Bivariate Gaussian Function-Based Genetic Algorithms, J. Compos. Mater., 52, pp.2829-2844. https://doi.org/10.1177/0021998318754997
  6. Park, K.Y., Park, S.W., Kim, D.K., Lee, S.H. (2019) Displacement Reconstruction Using Acceleration Time History Measured by Seismic Acceleration Sensor Installed on the Center of Main Girder of Cable-stayed Bridge: Case Study on Pohang Earthquake, J. Korean Soc. Adv. Compos. Struct., 10, pp.50-58. https://doi.org/10.11004/kosacs.2019.10.1.050
  7. Rus, G., Lee, S.Y., Chang, S.Y., Wooh, S.C. (2006) Optimized Damage Detection of Steel Plates From Noisy Impact Test, Int. J. Numer. Methods Eng., 68, pp.707-727. https://doi.org/10.1002/nme.1720
  8. Sakamoto, J., Oda, J. (2012) A Technique of Optimal Layout Design for Truss Structures Using Genetic Algorithm, AIAA, 93, pp.2402-2408.
  9. Sharif-Khodaei, Z.M., Aliabadi, M.H. (2015) Impact Damage Detection in Composite Plates Using a Self-Diagnostic Electro-Mechanical Impedance Based Structural Health Monitoring System, J. Multiscale Model, 6, pp.1-20.