DOI QR코드

DOI QR Code

다물체 페리다이나믹 해석을 위한 MPI-OpenMP 혼합 병렬화

MPI-OpenMP Hybrid Parallelization for Multibody Peridynamic Simulations

  • Lee, Seungwoo (Moasys Corporation) ;
  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.)
  • 투고 : 2020.02.18
  • 심사 : 2020.04.14
  • 발행 : 2020.06.30

초록

본 연구에서는 다물체 페리다이나믹 해석 코드의 MPI-OpenMP 혼합 병렬화를 수행하였다. 페리다이나믹 해석 모델은 복잡한 동적파괴 거동 및 불연속 특성을 모사하는데 적합하지만, 비국부 영역을 통한 절점 간 상호작용을 계산하기 때문에 유한요소 모델에 비해 계산 시간이 많이 소요된다. 또한 다중적층구조물의 다물체 페리다이나믹 해석에서 추가된 비국부 접촉 모델과 가상 층간 결합 모델을 통한 여러 물체 간 상호작용으로 계산 부담이 증가한다. 더불어 고속 충돌 파괴와 같은 복잡한 동적 파괴 거동 해석을 위해 세밀한 절점 간격과 작은 시간 간격이 요구되기 때문에 코드 최적화와 병렬화를 통한 고성능 해석 코드 개발이 필수적이다. 해석 코드는 Intel Fortran MPI compiler와 OpenMP를 사용하여 개발되었으며, 한국과학기술정보원(KISTI)의 슈퍼컴퓨팅센터 누리온(Nurion)으로 실행되었다. 다물체 해석 코드를 최적화하기 위한 핵심 요소들을 분석하고, 모델 의존성 발생 서브루틴 분석 및 프로세스 통신 데이터 분별을 통해 MPI-OpenMP 혼합 병렬 처리 구조를 적용하였다. 다물체 충돌 파괴 현상 시뮬레이션을 통해 개발된 병렬 처리 코드의 성능을 확인하였다.

In this study, we develop MPI-OpenMP hybrid parallelization for multibody peridynamic simulations. Peridynamics is suitable for analyzing complicated dynamic fractures and various discontinuities. However, compared with a conventional finite element method, nonlocal interactions in peridynamics cost more time and memory. In multibody peridynamic analysis, the costs increase due to the additional interactions that occur when computing the nonlocal contact and ghost interlayer models between adjacent bodies. The costs become excessive when further refinement and smaller time steps are required in cases of high-velocity impact fracturing or similar instances. Thus, high computational efficiency and performance can be achieved by parallelization and optimization of multibody peridynamic simulations. The analytical code is developed using an Intel Fortran MPI compiler and OpenMP in NURION of the KISTI HPC center and parallelized through MPI-OpenMP hybrid parallelization. Further parallelization is conducted by hybridizing with OpenMP threads in each MPI process. We also try to minimize communication operations by model-based decomposition of MPI processes. The numerical results for the impact fracturing of multiple bodies show that the computing performance improves significantly with MPI-OpenMP hybrid parallelization.

키워드

참고문헌

  1. Bobaru, F., Ha, Y.D., Hu, W. (2012) Damage Progression from Impact in Multilayered Glass Modeled with Peridynamics, Cent. Eur. J. Eng., 2(4), pp.551-561.
  2. Ha, Y.D. (2019) Dynamic Fracture Analysis for 2D Multilayered Glass Structures Considering Interlayer Effects, J. Mech. Sci. Tech., 33(8), pp.3641-3648. https://doi.org/10.1007/s12206-019-0704-4
  3. Ha, Y.D. (2020) An Extended Ghost Interlayer Model in Peridynamic Theory for High-Velocity Impact Fracture of Laminated Glass Structures, Under Review.
  4. Ha, Y.D., Ahn, T.S. (2018) Peridynamic Impact Fracture Analysis of Multilayered Glass with Nonlocal Ghost Interlayer Model, J. Comput. Strcut. Eng. Inst. Korea, 31(6), pp.373-380. https://doi.org/10.7734/COSEIK.2018.31.6.373
  5. Ha, Y.D., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, Int. J. Fract., 162(1-2), pp.229-244. https://doi.org/10.1007/s10704-010-9442-4
  6. Ha, Y.D., Cho, S. (2011) Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed, J. Comput. Strcut. Eng. Inst. Korea, 24(6), pp.637-643.
  7. Ha, Y.D., Lee, J., Hong, J.W. (2015) Fracturing Patterns of Rock-like Materials in Compression Captured with Peridynamics, Eng. Fract. Mech., 144, pp.176-193. https://doi.org/10.1016/j.engfracmech.2015.06.064
  8. Hu, W., Ha, Y.D., Bobaru, F. (2012) Peridynamic Model for Dynamic Fracture in Unidirectional Fiber-Reinforced Composites, Comput. Methods Appl. Mech. Eng., 217, pp.247-261. https://doi.org/10.1016/j.cma.2012.01.016
  9. Silling, S.A. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. & Phys. Solids, 48, pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  10. Silling, S., Askari, E. (2005) A Meshfree Method based on the Peridynamic Model of Solid Mechanics. Comput. Struct., 83(17-18), pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026
  11. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E. (2007) Peridynamics States and Constitutive Modeling, J. Elasticity., 88, pp.151-184. https://doi.org/10.1007/s10659-007-9125-1