DOI QR코드

DOI QR Code

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol (Department of Computer Engineering, Chosun University) ;
  • Ahmed, Samsuddin (Department of Computer Engineering, Chosun University) ;
  • Jung, Ho Yub (Department of Computer Engineering, Chosun University)
  • 투고 : 2020.03.17
  • 심사 : 2020.05.05
  • 발행 : 2020.06.30

초록

The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

키워드

참고문헌

  1. J. Kawahara; C. J. Brown; S. P. Miller; B. G. Booth; V. Chau; R. E. Grunau; J. G. Zwicker; G. Hamarneh; "Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment," NeuroImage, vol.146, pp. 1038-1049, 2017. https://doi.org/10.1016/j.neuroimage.2016.09.046
  2. P. A. Yushkevich; B. B. Avants; S. R. Das; J. Pluta; M. Altinay; C. Craige; A. D. N. Initiative; et al.; "Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in adni 3T mri data," Neuroimage, vol.50, no.2, pp.434-445, 2010 https://doi.org/10.1016/j.neuroimage.2009.12.007
  3. J. D. Bremner; P. Randall; T. M. Scott; R. A. Bronen; J. P. Seibyl; S. M. Southwick; R. C. Delaney; G. McCarthy; D. S. Charney; R. B. Innis; "Mri-based measurement of hippocampal volume in patients with combatrelated posttraumatic stress disorder," The American journal of psychiatry, vol.152, no.7, p.973, 1995 https://doi.org/10.1176/ajp.152.7.973
  4. E. R. Mulder; R. A. de Jong; D. L. Knol; R. A. van Schijndel; K. S. Cover; P. J. Visser; F. Barkhof; H. Vrenken; "Hippocampal volume change measurement: Quantitative assessment of the reproducibility of expert manual outlining and the automated methods freesurfer and FIRST," NeuroImage, vol.92, pp.169-181, 2014 https://doi.org/10.1016/j.neuroimage.2014.01.058
  5. I. B. Malone; K. K. Leung; S. Clegg; J. Barnes; J. L. Whitwell; J. Ashburner; N. C. Fox; G. R. Ridgway; "Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance," NeuroImage, vol.104, pp.366-372, 2015 https://doi.org/10.1016/j.neuroimage.2014.09.034
  6. J. L. Winterburn; J. C. Pruessner; S. Chavez; M. M. Schira; N. J. Lobaugh; A. N. Voineskos; M. M. Chakravarty; "A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging," NeuroImage, vol.74, pp.254-265, 2013 https://doi.org/10.1016/j.neuroimage.2013.02.003
  7. N. Sharma; A. N. Singh; "Exploring biomarkers for alzheimer's disease," Journal of clinical and diagnostic research: JCDR, vol.10, no.7, p. KE01, 2016
  8. C. Omizzolo; D. K. Thompson; S. E. Scratch; R. Stargatt; K. J. Lee; J. Cheong; G. Roberts; L. W. Doyle; P. J. Anderson; "Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm," Journal of the International Neuropsychological Society, vol.19, no.10, pp.1065-1075, 2013 https://doi.org/10.1017/S1355617713000891
  9. J. Dolz; C. Desrosiers; I. B. Ayed; "3d fully convolutional networks for subcortical segmentation in MRI: A large-scale study," NeuroImage, vol.170, pp.456-470, 2018 https://doi.org/10.1016/j.neuroimage.2017.04.039
  10. J. E. Iglesias; J. C. Augustinack; K. Nguyen; C. M. Player; A. Player; M. Wright; N. Roy; M. P. Frosch; A. C. McKee; L. L. Wald; B. Fischl; K. V. Leemput; "A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI," NeuroImage, vol.115, pp.117-137, 2015 https://doi.org/10.1016/j.neuroimage.2015.04.042
  11. J. E. Iglesias; K. V. Leemput; J. Augustinack; R. Insausti; B. Fischl; M. Reuter; "Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases," NeuroImage, vol.141, pp.542-555, 2016 https://doi.org/10.1016/j.neuroimage.2016.07.020
  12. Y. LeCun; Y. Bengio; G. E. Hinton; "Deep learning," Nature, vol.521, no.7553, pp.436-444, 2015 https://doi.org/10.1038/nature14539
  13. Y. Lecun; L. Bottou; Y. Bengio; P. Haffner; "Gradient-based learning applied to document recognition," in Proc. of the IEEE, pp.2278-2324, 1998 https://doi.org/10.1109/5.726791
  14. A. Basher; K. Y. Choi; J. J. Lee; B. Lee; B. C. Kim; K. H. Lee; H. Y. Jung; "Hippocampus localization using a two-stage ensemble hough convolutional neural network," IEEE Access, vol.7, pp.73436-73447, 2019 https://doi.org/10.1109/ACCESS.2019.2920005
  15. N. J. Tustison; P. A. Cook; A. Klein; G. Song; S. R. Das; J. T. Duda; B. M. Kandel; N. van Strien; J. R. Stone; J. C. Gee; B. B. Avants; "Largescale evaluation of ants and freesurfer cortical thickness measurements," NeuroImage, vol.99, pp.166-179, 2014 https://doi.org/10.1016/j.neuroimage.2014.05.044
  16. F. Cendes; F. Andermann; P. Gloor; A. Evans; M. Jones-Gotman; C. Watson; D. Melanson; A. Olivier; T. Peters; I. Lopes-Cendes; et al.; "Mri volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy," Neurology, vol.43, no.4, pp.719-719, 1993 https://doi.org/10.1212/WNL.43.4.719
  17. F. van der Lijn; T. den Heijer; M. M. B. Breteler; W. J. Niessen; "Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts," NeuroImage, vol.43, no.4, pp.708-720, 2008 https://doi.org/10.1016/j.neuroimage.2008.07.058
  18. O. T. Carmichael; H. A. Aizenstein; S. W. Davis; J. T. Becker; P. M. Thompson; C. C. Meltzer; Y. Liu; "Atlas-based hippocampus segmentation in alzheimer's disease and mild cognitive impairment," NeuroImage, vol.27, no.4, pp.979-990, 2005 https://doi.org/10.1016/j.neuroimage.2005.05.005
  19. P. Coupe; J. V. Manjon; V. Fonov; J. Pruessner; M. Robles; D. L. Collins; "Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation," NeuroImage, vol.54, no.2, pp.940-954, 2011 https://doi.org/10.1016/j.neuroimage.2010.09.018
  20. J. E. Iglesias; K. V. Leemput; P. Bhatt; C. Casillas; S. Dutt; N. Schuff; D. Truran-Sacrey; A. L. Boxer; B. Fischl; "Bayesian segmentation of brainstem structures in MRI," NeuroImage, vol.113, pp.184-195, 2015 https://doi.org/10.1016/j.neuroimage.2015.02.065
  21. T. D. Vu; H.-J. Yang; L. N. Do; T. N. Thieu; "Classifying instantaneous cognitive states from fmri using discriminant based feature selection and adaboost," Smart Media Journal, vol.5, no.1, pp.30-37, 2016
  22. J. Gall; A. Yao; N. Razavi; L. J. V. Gool; V. S. Lempitsky; "Hough forests for object detection, tracking, and action recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol.33, no.11, pp.2188-2202, 2011 https://doi.org/10.1109/TPAMI.2011.70
  23. M. TrieuTran; G. SangLee; "Super-resolution in music score images by instance normalization," Smart Media Journal, vol.8, pp.64-71, 2019 https://doi.org/10.30693/SMJ.2019.8.4.64
  24. H. T. Tran; A. R. Oh; I. S. Na; S. H. Kim; "Liver segmentation and 3d modeling from abdominal ct images," Smart Media Journal, vol.5, no.1, pp.49-54, 2016
  25. C. Wachinger; M. Reuter; T. Klein; "Deepnat: Deep convolutional neural network for segmenting neuroanatomy," NeuroImage, vol.170, pp.434-445, 2018 https://doi.org/10.1016/j.neuroimage.2017.02.035
  26. F. Milletari; S. Ahmadi; C. Kroll; A. Plate; V. E. Rozanski; J. Maiostre; J. Levin; O. Dietrich; B. Ertl-Wagner; K. Botzel; N. Navab; "Houghcnn: Deep learning for segmentation of deep brain regions in MRI and ultrasound," Computer Vision and Image Understanding, vol.164, pp.92-102, 2017 https://doi.org/10.1016/j.cviu.2017.04.002
  27. W. A. Al; H. Y. Jung; I. D. Yun; Y. Jang; H.-B. Park; H.-J. Chang; "Automatic aortic valve landmark localization in coronary ct angiography using colonial walk," PLOS ONE, vol.13, pp.1-23, 2018
  28. O. Ronneberger; P. Fischer; T. Brox; "U-net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015-18th International Conference Munich, Germany, October 5 - 9, 2015, Proc. Part III vol.9351 of Lecture Notes in Computer Science, pp.234-241, Springer, 2015
  29. O. Cicek; A. Abdulkadir; S. S. Lienkamp; T. Brox; O. Ronneberger; "3d u-net: learning dense volumetric segmentation from sparse annotation," in International conference on medical image computing and computer-assisted intervention, pp.424-432, Springer, 2016
  30. N. T. Duc; S. Ryu; M. N. I. Qureshi; M. Choi; K. H. Lee; B. Lee; "3d-deep learning based automatic diagnosis of alzheimer's disease with joint mmse prediction using resting-state fmri," Neuroinformatics, vol.18, no.1, pp.71-86, 2020 https://doi.org/10.1007/s12021-019-09419-w
  31. M. N. I. Qureshi; S. Ryu; J. Song; K. H. Lee; B. Lee; "Evaluation of functional decline in alzheimer's dementia using 3d deep learning and group ica for rs-fmri measurements," Frontiers in aging neuroscience, vol.11, p.8, 2019 https://doi.org/10.3389/fnagi.2019.00008
  32. S. Ioffe; C. Szegedy; "Batch normalization: Accelerating deep network training by reducing internal covariate shift," in Proc of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, vol.37 of JMLR Workshop and Conference Proceedings, pp.448-456, JMLR.org, 2015
  33. V. Nair; G. E. Hinton; "Rectified linear units improve restricted boltzmann machines," in Proc. of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel (J. Furnkranz and T. Joachims, eds.), pp.807-814, Omnipress, 2010
  34. D. P. Kingma; J. Ba; "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015
  35. K. Y. Choi; J. J. Lee; T. I. Gunasekaran; S. Kang; W. Lee; J. Jeong; H. J. Lim; X. Zhang; C. Zhu; S.-Y. Won; et al.; "Apoe promoter polymorphism- 219t/g is an effect modifier of the influence of apoe "4 on alzheimer's disease risk in a multiracial sample," Journal of clinical medicine, vol.8, no.8, p.1236, 2019 https://doi.org/10.3390/jcm8081236
  36. https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfields (accessed June 15, 2020).