DOI QR코드

DOI QR Code

The Altered Signaling on EFS-Induced Colon Contractility in Diabetic Rats

  • Thein, Wynn (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Po, Wah Wah (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Kim, Dong Min (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
  • 투고 : 2019.10.30
  • 심사 : 2020.01.07
  • 발행 : 2020.07.01

초록

Diabetes mellitus affects the colonic motility developing gastrointestinal symptoms, such as constipation. The aim of the study was to examine the role of intracellular signaling pathways contributing to colonic dysmotility in diabetes mellitus. To generate diabetes mellitus, the rats were injected by a single high dose of streptozotocin (65 mg/kg) intraperitoneally. The proximal colons from both normal and diabetic rats were contracted by applying an electrical field stimulation with pulse voltage of 40 V in amplitude and pulse duration of 1 ms at frequencies of 1, 2, 4, and 6 Hz. The muscle strips from both normal rats and rats with diabetes mellitus were pretreated with different antagonists and inhibitors. Rats with diabetes mellitus had lower motility than the control group. There were significant differences in the percentage of inhibition of contraction between normal rats and rats with diabetes mellitus after the incubation of tetrodotoxin (neuronal blocker), atropine (muscarinic receptor antagonist), prazosin (α1 adrenergic receptor antagonist), DPCPX (adenosine A1 receptor antagonist), verapamil (L-type Ca2+ channel blocker), U73122 (PLC inhibitor), ML-9 (MLCK inhibitor), udenafil (PDE5 inhibitor), and methylene blue (guanylate cyclase inhibitor). The protein expression of p-MLC and PDE5 were decreased in the diabetic group compared to the normal group. These results showed that the reduced colonic contractility resulted from the impaired neuronal conduction and decreased muscarinic receptor sensitivity, which resulted in decreased phosphorylation of MLC via MLCK, and cGMP activity through PDE5.

키워드

참고문헌

  1. Amaral, N. and Okonko, D. O. (2015) Metabolic abnormalities of the heart in type II diabetes. Diab. Vasc. Dis. Res. 12, 239-248. https://doi.org/10.1177/1479164115580936
  2. Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725-748. https://doi.org/10.1152/physrev.1995.75.4.725
  3. Broad, R. M., McDonald, T. J., Brodin, E. and Cook, M. A. (1992) Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings. Am. J. Physiol. 262, G525-G531. https://doi.org/10.1152/ajpgi.1992.262.3.G525
  4. Bytzer, P., Talley, N. J., Leemon, M., Young, L. J., Jones, M. P. and Horowitz, M. (2001) Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch. Intern. Med. 161, 1989-1996. https://doi.org/10.1001/archinte.161.16.1989
  5. Carrier, G. O. and Aronstam, R. S. (1990) Increased muscarinic responsiveness and decreased muscarinic receptor content in ileal smooth muscle in diabetes. J. Pharmacol. Exp. Ther. 254, 445-449.
  6. Chandrasekharan, B., Anitha, M., Blatt, R., Shahnavaz, N., Kooby, D., Staley, C., Mwangi, S., Jones, D. P., Sitaraman, S. V. and Srinivasan, S. (2011) Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol. Motil. 23, 131-138, e126.
  7. Christofi, F. L. and Wood, J. D. (1993) Presynaptic inhibition by adenosine A1 receptors on guinea pig small intestinal myenteric neurons. Gastroenterology 104, 1420-1429. https://doi.org/10.1016/0016-5085(93)90351-C
  8. Clark, R. J., McDonough, P. M., Swanson, E., Trost, S. U., Suzuki, M., Fukuda, M. and Dillmann, W. H. (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J. Biol. Chem. 278, 44230-44237. https://doi.org/10.1074/jbc.M303810200
  9. Clements, R. T., Sodha, N. R., Feng, J., Boodhwani, M., Liu, Y., Mieno, S., Khabbaz, K. R., Bianchi, C. and Sellke, F. W. (2009) Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes. Microcirculation 16, 193-206. https://doi.org/10.1080/10739680802461950
  10. Conti, M. and Beavo, J. (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481-511. https://doi.org/10.1146/annurev.biochem.76.060305.150444
  11. EcklyMichel, A. E., LeBec, A. and Lugnier, C. (1997) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85-88. https://doi.org/10.1016/S0014-2999(97)00149-0
  12. Feldman, M. and Schiller, L. R. (1983) Disorders of gastrointestinal motility associated with diabetes mellitus. Ann. Intern. Med. 98, 378-384. https://doi.org/10.7326/0003-4819-98-3-378
  13. Forrest, A., Huizinga, J. D., Wang, X. Y., Liu, L. W. and Parsons, M. (2008) Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G315-G326. https://doi.org/10.1152/ajpgi.00196.2007
  14. Forrest, A., Molleman, A. and Parsons, M. (2005) The responses to manipulation of extracellular and intracellular calcium are altered in the streptozotocin-diabetic rat colon and ileum. Eur. J. Pharmacol. 509, 77-83. https://doi.org/10.1016/j.ejphar.2004.12.029
  15. Francis, S. H., Blount, M. A. and Corbin, J. D. (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91, 651-690. https://doi.org/10.1152/physrev.00030.2010
  16. Furlan, M. M., de Miranda Neto, M. H., Sant'ana Dde, M. and Molinari, S. L. (1999) Number and size of myenteric neurons of the duodenum of adult rats with acute diabetes. Arq. Neuropsiquiatr. 57, 740-745. https://doi.org/10.1590/S0004-282X1999000500003
  17. Furlan, M. M., Molinari, S. L. and Miranda Neto, M. H. (2002) Morphoquantitative effects of acute diabetes on the myenteric neurons of the proximal colon of adult rats. Arq. Neuropsiquiatr. 60, 576-581. https://doi.org/10.1590/S0004-282X2002000400012
  18. Ha, H. S., Lee, S. E., Lee, H. S., Kim, G. H., Yoon, C. J., Han, J. S., Lee, J. Y. and Sohn, U. D. (2017) The signaling of protease-activated receptor-2 activating peptide-induced contraction in cat esophageal smooth muscle cells. Arch. Pharm. Res. 40, 1443-1454. https://doi.org/10.1007/s12272-017-0975-1
  19. Han, J. S., Min, Y. S., Kim, G. H., Chae, S. H., Nam, Y., Lee, J., Lee, S. Y. and Sohn, U. D. (2018) The change of signaling pathway on the electrical stimulated contraction in streptozotocin-induced bladder dysfunction of rats. Korean J. Physiol. Pharmacol. 22, 577-584. https://doi.org/10.4196/kjpp.2018.22.5.577
  20. Hartshorne, D. J., Ito, M. and Erdodi, F. (2004) Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J. Biol. Chem. 279, 37211-37214. https://doi.org/10.1074/jbc.R400018200
  21. Hu, W. and Feng, P. (2012) Myosin light chain kinase is involved in the mechanism of gastrointestinal dysfunction in diabetic rats. Dig. Dis. Sci. 57, 1197-1202. https://doi.org/10.1007/s10620-012-2041-7
  22. Ihara, E., Beck, P. L., Chappellaz, M., Wong, J., Medlicott, S. A. and MacDonald, J. A. (2009) Mitogen-activated protein kinase pathways contribute to hypercontractility and increased Ca2+ sensitization in murine experimental colitis. Mol. Pharmacol. 75, 1031-1041. https://doi.org/10.1124/mol.108.049858
  23. Ihara, E., Yu, Q., Chappellaz, M. and MacDonald, J. A. (2015) ERK and p38MAPK pathways regulate myosin light chain phosphatase and contribute to Ca2+ sensitization of intestinal smooth muscle contraction. Neurogastroenterol. Motil. 27, 135-146. https://doi.org/10.1111/nmo.12491
  24. Kamm, K. E. and Stull, J. T. (2001) Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276, 4527-4530. https://doi.org/10.1074/jbc.r000028200
  25. Khromov, A. S., Wang, H., Choudhury, N., McDuffie, M., Herring, B. P., Nakamoto, R., Owens, G. K., Somlyo, A. P. and Somlyo, A. V. (2006) Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc. Natl. Acad. Sci. U.S.A. 103, 2440-2445. https://doi.org/10.1073/pnas.0508566103
  26. Kilbinger, H., Kruel, R., Pfeuffer-Friederich, I. and Wessler, I. (1982) The effects of metoclopramide on acetylcholine release and on smooth muscle response in the isolated guinea-pig ileum. Naunyn Schmiedebergs Arch. Pharmacol. 319, 231-238. https://doi.org/10.1007/BF00495871
  27. Kim, S. J., Park, J. H., Song, D. K., Park, K. S., Lee, J. E., Kim, E. S., Cho, K. B., Jang, B. K., Chung, W. J., Hwang, J. S., Kwon, J. G. and Kim, T. W. (2011) Alterations of colonic contractility in long-term diabetic rat model. J. Neurogastroenterol. Motil. 17, 372-380. https://doi.org/10.5056/jnm.2011.17.4.372
  28. Lincoln, T. M. (2007) Myosin phosphatase regulatory pathways: different functions or redundant functions? Circ. Res. 100, 10-12. https://doi.org/10.1161/01.RES.0000255894.25293.82
  29. Lohse, M. J., Klotz, K. N., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U. and Olsson, R. A. (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 336, 204-210. https://doi.org/10.1007/BF00165806
  30. Luckensmeyer, G. B. and Keast, J. R. (1998) Activation of alpha- and beta-adrenoceptors by sympathetic nerve stimulation in the large intestine of the rat. J. Physiol. 510, 549-561. https://doi.org/10.1111/j.1469-7793.1998.549bk.x
  31. Mogami, H., Lloyd Mills, C. and Gallacher, D. V. (1997) Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells. Biochem. J. 324, 645-651. https://doi.org/10.1042/bj3240645
  32. Murthy, K. S. (2001) Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem. J. 360, 199-208. https://doi.org/10.1042/bj3600199
  33. Nowak, T. V., Harrington, B., Weisbruch, J. P. and Kalbfleisch, J. H. (1990) Structural and functional characteristics of muscle from diabetic rodent small intestine. Am. J. Physiol. 258, G690-G698.
  34. O'Kane, K. and Gibson, A. (1999) Characterisation of nitrergic transmission in the isolated anococcygeus muscle of the female mouse. Eur. J. Pharmacol. 377, 69-74. https://doi.org/10.1016/S0014-2999(99)00398-2
  35. Paton, D. M. (1981) Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J. Auton. Pharmacol. 1, 287-290. https://doi.org/10.1111/j.1474-8673.1981.tb00457.x
  36. Pecoits-Filho, R., Abensur, H., Betonico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S. and Vencio, S. (2016) Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol. Metab. Syndr. 8, 50. https://doi.org/10.1186/s13098-016-0159-z
  37. Reeves, J. J., Coates, J., Jarvis, J. E., Sheehan, M. J. and Strong, P. (1993) Characterization of the adenosine receptor mediating contraction in rat colonic muscularis mucosae. Br. J. Pharmacol. 110, 1255-1259. https://doi.org/10.1111/j.1476-5381.1993.tb13950.x
  38. Ruwart, M. J., Klepper, M. S. and Rush, B. D. (1979) Carbachol stimulation of gastrointestinal transit in the postoperative lleus rat. J. Surg. Res. 26, 18-26. https://doi.org/10.1016/0022-4804(79)90073-8
  39. Rybalkin, S. D., Yan, C., Bornfeldt, K. E. and Beavo, J. A. (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res. 93, 280-291. https://doi.org/10.1161/01.RES.0000087541.15600.2B
  40. Sims, M. A., Hasler, W. L., Chey, W. D., Kim, M. S. and Owyang, C. (1995) Hyperglycemia inhibits mechanoreceptor-mediated gastrocolonic responses and colonic peristaltic reflexes in healthy humans. Gastroenterology 108, 350-359. https://doi.org/10.1016/0016-5085(95)90060-8
  41. Smith, R. J., Sam, L. M., Justen, J. M., Bundy, G. L., Bala, G. A. and Bleasdale, J. E. (1990) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253, 688-697.
  42. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  43. Su, X., Changolkar, A., Chacko, S. and Moreland, R. S. (2004) Diabetes decreases rabbit bladder smooth muscle contraction while increasing levels of myosin light chain phosphorylation. Am. J. Physiol. Renal Physiol. 287, F690-F699.
  44. Touw, K., Chakraborty, S., Zhang, W., Obukhov, A. G., Tune, J. D., Gunst, S. J. and Herring, B. P. (2012) Altered calcium signaling in colonic smooth muscle of type 1 diabetic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G66-G76. https://doi.org/10.1152/ajpgi.00183.2011
  45. Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., Hirsch, I. B., Kalantar-Zadeh, K., Narva, A. S., Navaneethan, S. D., Neumiller, J. J., Patel, U. D., Ratner, R. E., Whaley-Connell, A. T. and Molitch, M. E. (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510-533. https://doi.org/10.1053/j.ajkd.2014.08.001
  46. Van Den Eeden, S. K., Sarma, A. V., Rutledge, B. N., Cleary, P. A., Kusek, J. W., Nyberg, L. M., McVary, K. T. and Wessells, H.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Research Group (2009) Effect of intensive glycemic control and diabetes complications on lower urinary tract symptoms in men with type 1 diabetes: Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes Care 32, 664-670. https://doi.org/10.2337/dc07-2375
  47. Weissman, A. J. (2006) Intensive diabetes treatment and cardiovascular disease. N. Engl. J. Med. 354, 1751-1752; author reply 1751-1752. https://doi.org/10.1056/NEJMc060105
  48. Wu, K. K. and Huan, Y. (2008) Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. Chapter 5, Unit 5.47.

피인용 문헌

  1. CD44 fucosylation on bone marrow-derived mesenchymal stem cells enhances homing and promotes enteric nervous system remodeling in diabetic mice vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00632-2