References
- Amaral, N. and Okonko, D. O. (2015) Metabolic abnormalities of the heart in type II diabetes. Diab. Vasc. Dis. Res. 12, 239-248. https://doi.org/10.1177/1479164115580936
- Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725-748. https://doi.org/10.1152/physrev.1995.75.4.725
- Broad, R. M., McDonald, T. J., Brodin, E. and Cook, M. A. (1992) Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings. Am. J. Physiol. 262, G525-G531. https://doi.org/10.1152/ajpgi.1992.262.3.G525
- Bytzer, P., Talley, N. J., Leemon, M., Young, L. J., Jones, M. P. and Horowitz, M. (2001) Prevalence of gastrointestinal symptoms associated with diabetes mellitus: a population-based survey of 15,000 adults. Arch. Intern. Med. 161, 1989-1996. https://doi.org/10.1001/archinte.161.16.1989
- Carrier, G. O. and Aronstam, R. S. (1990) Increased muscarinic responsiveness and decreased muscarinic receptor content in ileal smooth muscle in diabetes. J. Pharmacol. Exp. Ther. 254, 445-449.
- Chandrasekharan, B., Anitha, M., Blatt, R., Shahnavaz, N., Kooby, D., Staley, C., Mwangi, S., Jones, D. P., Sitaraman, S. V. and Srinivasan, S. (2011) Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol. Motil. 23, 131-138, e126.
- Christofi, F. L. and Wood, J. D. (1993) Presynaptic inhibition by adenosine A1 receptors on guinea pig small intestinal myenteric neurons. Gastroenterology 104, 1420-1429. https://doi.org/10.1016/0016-5085(93)90351-C
- Clark, R. J., McDonough, P. M., Swanson, E., Trost, S. U., Suzuki, M., Fukuda, M. and Dillmann, W. H. (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J. Biol. Chem. 278, 44230-44237. https://doi.org/10.1074/jbc.M303810200
- Clements, R. T., Sodha, N. R., Feng, J., Boodhwani, M., Liu, Y., Mieno, S., Khabbaz, K. R., Bianchi, C. and Sellke, F. W. (2009) Impaired coronary microvascular dilation correlates with enhanced vascular smooth muscle MLC phosphorylation in diabetes. Microcirculation 16, 193-206. https://doi.org/10.1080/10739680802461950
- Conti, M. and Beavo, J. (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76, 481-511. https://doi.org/10.1146/annurev.biochem.76.060305.150444
- EcklyMichel, A. E., LeBec, A. and Lugnier, C. (1997) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85-88. https://doi.org/10.1016/S0014-2999(97)00149-0
- Feldman, M. and Schiller, L. R. (1983) Disorders of gastrointestinal motility associated with diabetes mellitus. Ann. Intern. Med. 98, 378-384. https://doi.org/10.7326/0003-4819-98-3-378
- Forrest, A., Huizinga, J. D., Wang, X. Y., Liu, L. W. and Parsons, M. (2008) Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G315-G326. https://doi.org/10.1152/ajpgi.00196.2007
- Forrest, A., Molleman, A. and Parsons, M. (2005) The responses to manipulation of extracellular and intracellular calcium are altered in the streptozotocin-diabetic rat colon and ileum. Eur. J. Pharmacol. 509, 77-83. https://doi.org/10.1016/j.ejphar.2004.12.029
- Francis, S. H., Blount, M. A. and Corbin, J. D. (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91, 651-690. https://doi.org/10.1152/physrev.00030.2010
- Furlan, M. M., de Miranda Neto, M. H., Sant'ana Dde, M. and Molinari, S. L. (1999) Number and size of myenteric neurons of the duodenum of adult rats with acute diabetes. Arq. Neuropsiquiatr. 57, 740-745. https://doi.org/10.1590/S0004-282X1999000500003
- Furlan, M. M., Molinari, S. L. and Miranda Neto, M. H. (2002) Morphoquantitative effects of acute diabetes on the myenteric neurons of the proximal colon of adult rats. Arq. Neuropsiquiatr. 60, 576-581. https://doi.org/10.1590/S0004-282X2002000400012
- Ha, H. S., Lee, S. E., Lee, H. S., Kim, G. H., Yoon, C. J., Han, J. S., Lee, J. Y. and Sohn, U. D. (2017) The signaling of protease-activated receptor-2 activating peptide-induced contraction in cat esophageal smooth muscle cells. Arch. Pharm. Res. 40, 1443-1454. https://doi.org/10.1007/s12272-017-0975-1
- Han, J. S., Min, Y. S., Kim, G. H., Chae, S. H., Nam, Y., Lee, J., Lee, S. Y. and Sohn, U. D. (2018) The change of signaling pathway on the electrical stimulated contraction in streptozotocin-induced bladder dysfunction of rats. Korean J. Physiol. Pharmacol. 22, 577-584. https://doi.org/10.4196/kjpp.2018.22.5.577
- Hartshorne, D. J., Ito, M. and Erdodi, F. (2004) Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J. Biol. Chem. 279, 37211-37214. https://doi.org/10.1074/jbc.R400018200
- Hu, W. and Feng, P. (2012) Myosin light chain kinase is involved in the mechanism of gastrointestinal dysfunction in diabetic rats. Dig. Dis. Sci. 57, 1197-1202. https://doi.org/10.1007/s10620-012-2041-7
- Ihara, E., Beck, P. L., Chappellaz, M., Wong, J., Medlicott, S. A. and MacDonald, J. A. (2009) Mitogen-activated protein kinase pathways contribute to hypercontractility and increased Ca2+ sensitization in murine experimental colitis. Mol. Pharmacol. 75, 1031-1041. https://doi.org/10.1124/mol.108.049858
- Ihara, E., Yu, Q., Chappellaz, M. and MacDonald, J. A. (2015) ERK and p38MAPK pathways regulate myosin light chain phosphatase and contribute to Ca2+ sensitization of intestinal smooth muscle contraction. Neurogastroenterol. Motil. 27, 135-146. https://doi.org/10.1111/nmo.12491
- Kamm, K. E. and Stull, J. T. (2001) Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276, 4527-4530. https://doi.org/10.1074/jbc.r000028200
- Khromov, A. S., Wang, H., Choudhury, N., McDuffie, M., Herring, B. P., Nakamoto, R., Owens, G. K., Somlyo, A. P. and Somlyo, A. V. (2006) Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc. Natl. Acad. Sci. U.S.A. 103, 2440-2445. https://doi.org/10.1073/pnas.0508566103
- Kilbinger, H., Kruel, R., Pfeuffer-Friederich, I. and Wessler, I. (1982) The effects of metoclopramide on acetylcholine release and on smooth muscle response in the isolated guinea-pig ileum. Naunyn Schmiedebergs Arch. Pharmacol. 319, 231-238. https://doi.org/10.1007/BF00495871
- Kim, S. J., Park, J. H., Song, D. K., Park, K. S., Lee, J. E., Kim, E. S., Cho, K. B., Jang, B. K., Chung, W. J., Hwang, J. S., Kwon, J. G. and Kim, T. W. (2011) Alterations of colonic contractility in long-term diabetic rat model. J. Neurogastroenterol. Motil. 17, 372-380. https://doi.org/10.5056/jnm.2011.17.4.372
- Lincoln, T. M. (2007) Myosin phosphatase regulatory pathways: different functions or redundant functions? Circ. Res. 100, 10-12. https://doi.org/10.1161/01.RES.0000255894.25293.82
- Lohse, M. J., Klotz, K. N., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U. and Olsson, R. A. (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 336, 204-210. https://doi.org/10.1007/BF00165806
- Luckensmeyer, G. B. and Keast, J. R. (1998) Activation of alpha- and beta-adrenoceptors by sympathetic nerve stimulation in the large intestine of the rat. J. Physiol. 510, 549-561. https://doi.org/10.1111/j.1469-7793.1998.549bk.x
- Mogami, H., Lloyd Mills, C. and Gallacher, D. V. (1997) Phospholipase C inhibitor, U73122, releases intracellular Ca2+, potentiates Ins(1,4,5)P3-mediated Ca2+ release and directly activates ion channels in mouse pancreatic acinar cells. Biochem. J. 324, 645-651. https://doi.org/10.1042/bj3240645
- Murthy, K. S. (2001) Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle. Biochem. J. 360, 199-208. https://doi.org/10.1042/bj3600199
- Nowak, T. V., Harrington, B., Weisbruch, J. P. and Kalbfleisch, J. H. (1990) Structural and functional characteristics of muscle from diabetic rodent small intestine. Am. J. Physiol. 258, G690-G698.
- O'Kane, K. and Gibson, A. (1999) Characterisation of nitrergic transmission in the isolated anococcygeus muscle of the female mouse. Eur. J. Pharmacol. 377, 69-74. https://doi.org/10.1016/S0014-2999(99)00398-2
- Paton, D. M. (1981) Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J. Auton. Pharmacol. 1, 287-290. https://doi.org/10.1111/j.1474-8673.1981.tb00457.x
- Pecoits-Filho, R., Abensur, H., Betonico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S. and Vencio, S. (2016) Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol. Metab. Syndr. 8, 50. https://doi.org/10.1186/s13098-016-0159-z
- Reeves, J. J., Coates, J., Jarvis, J. E., Sheehan, M. J. and Strong, P. (1993) Characterization of the adenosine receptor mediating contraction in rat colonic muscularis mucosae. Br. J. Pharmacol. 110, 1255-1259. https://doi.org/10.1111/j.1476-5381.1993.tb13950.x
- Ruwart, M. J., Klepper, M. S. and Rush, B. D. (1979) Carbachol stimulation of gastrointestinal transit in the postoperative lleus rat. J. Surg. Res. 26, 18-26. https://doi.org/10.1016/0022-4804(79)90073-8
- Rybalkin, S. D., Yan, C., Bornfeldt, K. E. and Beavo, J. A. (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res. 93, 280-291. https://doi.org/10.1161/01.RES.0000087541.15600.2B
- Sims, M. A., Hasler, W. L., Chey, W. D., Kim, M. S. and Owyang, C. (1995) Hyperglycemia inhibits mechanoreceptor-mediated gastrocolonic responses and colonic peristaltic reflexes in healthy humans. Gastroenterology 108, 350-359. https://doi.org/10.1016/0016-5085(95)90060-8
- Smith, R. J., Sam, L. M., Justen, J. M., Bundy, G. L., Bala, G. A. and Bleasdale, J. E. (1990) Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253, 688-697.
- Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
- Su, X., Changolkar, A., Chacko, S. and Moreland, R. S. (2004) Diabetes decreases rabbit bladder smooth muscle contraction while increasing levels of myosin light chain phosphorylation. Am. J. Physiol. Renal Physiol. 287, F690-F699.
- Touw, K., Chakraborty, S., Zhang, W., Obukhov, A. G., Tune, J. D., Gunst, S. J. and Herring, B. P. (2012) Altered calcium signaling in colonic smooth muscle of type 1 diabetic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G66-G76. https://doi.org/10.1152/ajpgi.00183.2011
- Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., Hirsch, I. B., Kalantar-Zadeh, K., Narva, A. S., Navaneethan, S. D., Neumiller, J. J., Patel, U. D., Ratner, R. E., Whaley-Connell, A. T. and Molitch, M. E. (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510-533. https://doi.org/10.1053/j.ajkd.2014.08.001
- Van Den Eeden, S. K., Sarma, A. V., Rutledge, B. N., Cleary, P. A., Kusek, J. W., Nyberg, L. M., McVary, K. T. and Wessells, H.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Research Group (2009) Effect of intensive glycemic control and diabetes complications on lower urinary tract symptoms in men with type 1 diabetes: Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes Care 32, 664-670. https://doi.org/10.2337/dc07-2375
- Weissman, A. J. (2006) Intensive diabetes treatment and cardiovascular disease. N. Engl. J. Med. 354, 1751-1752; author reply 1751-1752. https://doi.org/10.1056/NEJMc060105
- Wu, K. K. and Huan, Y. (2008) Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. Chapter 5, Unit 5.47.
Cited by
- CD44 fucosylation on bone marrow-derived mesenchymal stem cells enhances homing and promotes enteric nervous system remodeling in diabetic mice vol.11, pp.1, 2021, https://doi.org/10.1186/s13578-021-00632-2