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[Abstract]

In this paper, we analyze the characteristics of mobile cache, which is used to improve the data access 

speed when executing applications on mobile devices, and verify the importance of mobile cache through 

a cache data access experiment. The mobile device market has grown at a fast pace over the past decade; 

however, battery limitations and size, price considerations restrict the usage of fast hardware. Thus, their 

performance are supplemented by using a memory buffer structure such as the cache memory. The analysis 

mainly focuses on cache size, hierarchical structure of cache, cache replacement policy, and the effect these 

features has on mobile performance. For the experimental data, we applied a data set from a 

microprocessor system study, originally used to test the cache performance. In the experimental results, the 

average data access speed on a mobile device showed a performance improvement of up to 10 times with 

the presence of cache memory than without. Accordingly, the cache memory was helpful for the 

performance improvement of a mobile device when the specifications were identical.

▸Key words: Cache memory, Mobile cache memory, Cache replacement, First In First Out, 

Least Recently Used

[요   약]

본 논문에서는 모바일 기기에서 앱 실행 시 데이터 접근 속도를 향상하기 위해 사용하는 모바일 

캐시의 특징을 분석하고 캐시 데이터 접근 실험을 통해 모바일 캐시의 중요성을 검증한다. 지난 10년간 

모바일 기기 시장은 빠른 속도로 성장하였지만, 배터리가 제한적이고, 기기의 크기와 가격이 고려돼야 

하므로 속도가 빠른 하드웨어를 사용하기 어렵다. 따라서 캐시 메모리와 같이 메모리 완충 구조를 

통해 성능을 보완한다. 본 논문의 주요분석 대상은 캐시 메모리 크기, 캐시의 계층구조 그리고 교체방식

과 그에 따른 모바일 성능을 확인한다. 시뮬레이션 데이터는 마이크로프로세서 시스템 연구에서 캐시 

성능 확인용으로 사용한 데이터를 사용하였다. 실험결과 모바일 기기에서 캐시 메모리를 사용할 때 

데이터에 대한 평균 접근 속도는 캐시 메모리가 없을 때 보다 10배의 성능향상을 보였으며 결과적으로 

캐시 메모리는 같은 사양일 때 모바일 기기의 성능향상에 도움이 되는 것으로 나타났다.

▸주제어: 캐시 메모리, 모바일 캐시 메모리, 캐시 교체, 선입선출, 최근 최소 사용
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I. Introduction

The market for mobile devices such as smartph

ones and tablet PCs has been continuously growing 

[1]. Companies have been making efforts to increase 

the speed of mobile devices, and lately, the benchmark 

score [17] of an octa-core CPU [16] of a mobile device 

has become similar to that of the CPU of regular 

computers. Since the power consumption, size, and 

price of mobile device should be taken into consider

ation [2, 3], high-end devices such as Solid State Drive 

(SSD) or double data rate synchronous dynamic ran

dom-access memory (DDR) cannot be used in mobile 

devices [3].

When a CPU accesses a data of a main memory 

or a main memory accesses a data of a secondary 

storage, the difference of speed between the devices 

results in a delay. This delay can be overcome by 

using a cache memory [4].

Cache can be classified into buffer cache and 

CPU cache. The buffer cache mainly reduces the 

delay between the main memory and the secondary 

storage [3, 5], while the CPU cache reduces the 

delay between CPU and main memory [4].

As the size of cache memory increases, cache 

gains higher probability for containing the data 

that CPU requires [5]. Therefore, the performance 

of mobile devices improves by expanding the cache 

memory (e.g., using large on-chip cache). However, 

there is a trade-off relationship between the cache 

speed and cache size [6] since it gradually takes 

longer time to search for a data in the cache as 

the cache memory increases.

When cache memory is full of data, a cache has 

to replace the data that is no longer needed with 

replacement policies including the typical replacement 

policies: LRU (Least Recently Used), Round-Robin 

(First-In-First-Out, FIFO), Random.

This study analyzes mobile cache and its perfor

mance by varying the structures of mobile cache 

memories including cache sizes and cache levels. 

Furthermore, we evaluate the performance of LRU 

replacement policy in mobile devices, which is the 

policy used in mobile and computer cache, by com

paring LRU with Random and FIFO replacement poli

cy.

This study makes the following contributions:

▪ The importance of cache is analyzed in terms 

of improving mobile device performance.

▪ The analysis and simulation results of this study 

provide practical information to mobile cache 

researchers.

This paper is organized as follows. Section 2 

examines related research on mobile cache memory 

and replacement policies, and Section 3 describes the 

experimental methods for the study. Section 4 

analyzes the factors affecting the speed of mobile 

cache through experiments, and finally, Section 5 

states the conclusion.

II. Preliminaries

1. Mobile Cache

In mobile devices, low-power RAM and flash 

memory are used to minimize battery consumption 

[3, 21]. Since low-power hardware is limited in speed, 

mobile devices use cache memory to improve the 

speed of CPU accessing the main memory [1] (Fig. 1).

Information stored in the cache is mainly divided 

into two types: The first, is the instruction, which is 

stored when the CPU reads the instruction from the 

main memory; the second, is the data, which is 

stored when LOAD and STORE instructions are 

given. These instructions and data are stored in a 

unit of block to increase the efficiency of cache 

memory [7, 22]. If the desired data is in the cache, 

it is called a hit, and a miss if not; the ratio of hits 

is called hit rate, and the delay when accessing a 

memory is called access time [4].
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Fig. 1. Structure of a device with a multi-level cache 

(L1, L2, L3)

The methods for improving the cache performance 

in mobile devices are as follows. Optimizing the cache 

memory size, the cache level, the cache line size, the 

replacement policy, and the data access speed within 

cache memory are the methods [8, 23]. One way to 

increase the data access speed within cache memory 

is to divide the cache into an instruction cache and 

a data cache [9].

2. Multi-level Cache

A multi-level cache structure is used for the cache 

memory to maintain its speed because the caching 

speed slows down when a large cache memory is used 

[6] (Fig. 1). In a multi-level cache structure, the cache 

memory size increases level by level to maintain the 

speed of the upper-level cache [6]. Therefore, the 

cache of a typical mobile device, smartphone, 

consists of three level of cache memory namely, L1, 

L2, and L3 [19], and that of a tablet PC consists of 

two levels, L1 and L2 [16].

3. Cache Replacement Policies

When there is no space in the cache memory, the 

existing data must be evicted with a replacement 

algorithm to store new data. The ultimate goal of all 

cache replacement algorithms is to maintain the data, 

which will be used in the near future based on the 

locality, and to evict the data that has the least necessity. 

The speed of the device increases depending on the 

efficiency of the replacements.

In theory, an efficient replacement algorithm is the 

optimal (OPT) policy, which only evicts the data that 

will never be used or close to never. Currently, new 

cache replacement policies are studied, aiming to 

reach the hit rate of the OPT replacement policy [10].

This study applies the LRU, FIFO, and Random 

replacement algorithms to the simulation to evaluate 

the performance.

The LRU replacement policy evicts the data that is 

least recently used. LRU is known for the superior 

cache performance to FIFO and Random replacement 

policy [11]; however, LRU has large overhead costs 

since LRU requires a process of finding data that 

haven’t been accessed for a long time. In [12], 

two-queue (2Q), which is an LRU replacement algorithm 

that supplements the above drawback, is proposed, 

and as such, novel replacement algorithms based on 

LRU are often used in mobile devices as well as 

computers.

The FIFO replacement policy evicts the data that 

have remained in the cache for the longest time when 

the cache is full. Since the replacement is done by 

simply evicting data in chronological order, it does 

not produce as much overheads as the overheads 

associated with the LRU.

The Random replacement policy is a method for 

randomly selecting targets that will be replaced when 

the cache is full. It is a good replacement policy when 

the data required by CPU has no pattern because 

Random replacement policy does not generate 

overheads unlike other policies.

III. Experiment Methodology and 

Objectives

Table 1 shows the operating system, hardware 

specification, programming language, tool for building 

codes, and experimental data used in the experiments 

of this study.
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Operating System Windows 10

CPU Intel Xeon E5-2630 2.20GHz

RAM 128GB

Programming 

Language
Python 3.7.2

IDE Visual Studio Code

Experimental data
1,000,001 addresses, each 

address locating the data

Table 1. Experimental Environment

A CPU, multi-level caches, and a main memory are 

implemented in the experiments with all necessary 

data stored in the main memory. All data in the main 

memory are filled with random values and can be 

accessed by a matching address. The process starts 

by searching the required data in the register then 

in the cache memories, and finally in the main 

memory until it finds the data. The access time was 

set to 0.1 seconds (s) for the first-level cache (L1), 

0.3s for the second-level cache (L2), 0.7s for the 

third-level cache (L3), and 10s for the main memory.

Fig. 2 shows a recursive algorithm that searches 

the required data through all storages, and returns 

the data to all upper-level storages when the data 

is found.

There are two inputs to the algorithm: Address, 

which represents the memory address of a data, 

and StorageIndex, which represents an index to 

indicate the storage to search in. In line 1, the 

register, the cache, and the main memory are 

gathered in a list in which a storage is selected 

through StorageIndex (line 2). In line 3, the 

presence of the data in current storage is checked 

through Address. If the data is found in current 

storage, it is returned to the upper-level storage 

(line 11) while incrementing a hit-count if the data 

is found in a cache memory (lines 5–7). If the data 

is not found in current storage, the data is 

retrieved from lower-level storage by repeating the 

algorithm (lines 8–9). The retrieved data is stored in 

current storage with the address and returned to 

the upper-level storage device, thereby storing the 

retrieved data in the register in the end. The size of 

a data stored in a memory is set to 1 kilobyte (KB).

Fig. 2. The cache simulation algorithm

The data set used to check the cache performance 

from a microprocessor system study [18] has been 

applied to the mobile cache performance experiment 

by removing unnecessary data. A data of the original 

data set consists of n and address. n is a number 

between 0 and 3 indicating type of the MESI protocol 

[20] which is a protocol to maintain the consistency 

of cache data and main memory data. address is a 

32-bit address that incidates the location of a data 

in all memories.

In the mobile cache simulation, n was removed and 

only address was used to evaluate cache performance 

by monitoring the data access speed and hit rate.

In the data set, a total of 43,502 different addresses 

were used, and Fig. 3 shows the distribution of 

individual address of the data set, total of 43,502 

addresses. For example, within the data range of 

100,000 to 200,000, mostly addresses between 1 and 

10,875 and 10% of addresses between 10,876 and 

21,750 were used. In another example, the data 

ranging from 700,000 to 800,000 are constituted of 

60%, 25%, 10%, and 5% of the addresses between 

32,622 and 43,502, 21,751 and 32,625, 1 and 10,875, 

10,876 and 21,750 respectively. The addresses from 

1 to 10,875 are used regularly in the data set and the 

remaining addresses are used temporarily.

In the experiments, the following three test cases 

are used to analyze the characteristics of the cache 

replacement algorithm.
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Fig. 3. Data set distribution

[Test Case 1] The size of the cache memory, hit 

rate, and access speed are analyzed.

The analysis is performed considering that in 

general, smartphone cache memories consist of 64KB 

for L1, 1,000KB for L2, and 2,000KB for L3, noted as 

64/1000/2000. In other words, we implement different 

sizes of cache by increasing and decreasing the size 

to test the effect of cache memory size on hit rate 

and access time. There are five size variations of 

L1/L2/L3 implemented: 16/250/500; 32/500/1000; 

64/1000/2000; 128/2000/4000, and 256/4000/8000.

[Test Case 2] The efficiency of the multi-level 

structure of cache memory is evaluated.

The multi-level cache improves the performance 

of devices compared to single level cache [6, 13]; 

however, in tablets, the fastest CPU [16] consists of 

a 2-level cache of 128/8000. Therefore, the effect 

on the hit rate and the access speed is examined 

for 2-level, 3-level, and 4-level caches. In the 

experiment where L3 is removed, 128/4000 and 

128/8000 are studied.

In experiment of adding a fourth cache level L4, 

128/2000/4000/12000 and 128/1000/2000/12000 are 

studied by adding a cache size of 12,000KB that 

takes 3s to access.

[Test Case 3] The performance of LRU replacement 

policy is compared to other policies.

In the above two experiments, the performance of 

the standard LRU replacement policy is evaluated by 

comparing to the results of Random and FIFO replace

ment policies. It is important to examine the perfor

mance of the LRU replacement policy because it is 

the replacement policy used in mobile devices and 

computers.

IV. Evaluation of Mobile Cache 

Performance

1. Cache Size and the Performance

In this section, performance analysis is conducted 

according to the variation in the cache size, cache 

hierarchy, and replacement policy. In Table 2, all 

results of the experiment and the replacement 

policies exhibiting the best performance according to 

the structure of the cache are demonstrated. The 

structures of the cache are expressed as S1, S2, …, 

S10 in Fig. 4 to Fig. 7 with the precise structures 

stated below the figures.

The structure frequently used in smartphones is 

64/1000/2000. In the experiment of varying cache 

size, 256/4000/8000 exhibited the best performance 

among the experimented cache structures.

When the size increased from 16/250/500 to 

256/4000/8000, the cache hit rate increased by 

approximately 1.5 times from 59% to 94% (Fig. 4, 

Table 2), and the average access time noticeably 

decreased from 4.2s to 0.7s (Fig. 5, Table 2). With 

cache memories bigger than 256/4000/8000, hit 

rate and average access time did not vary 

significantly. Therefore, it is important to study the 

appropriate size of mobile cache memory.

When tested without cache, the average access 

time was 10s, as all data were accessed from the 

main memory. However, with a cache memory in 

the mobile device, the access time decreased by up 

to 1s depending on the size of cache memory. With 

64/1000/2000, the average access time was 2s, 

which was five times faster than the access time in 

the absence of cache memory.
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Fig. 4. Hit rate according to cache sizes. The 

cache structures are displayed below.

        S1: 16/250/500, S2: 32/500/1000, 

        S3: 64/1000/2000, S4: 128/2000/4000, 

        S5: 256/4000/8000

Fig. 5. Access time according to cache sizes. The 

cache structures are displayed below.

           S1: 16/250/500, S2: 32/500/1000, 

           S3: 64/1000/2000, S4: 128/2000/4000, 

           S5: 256/4000/8000

2. Cache Hierarchy and the Performance

In tablet PCs, the fastest CPU consists of a 2-level 

cache with 128KB for L1 and 8,000KB for L2. Therefore, 

an analysis was conducted to examine the variations 

in the hit rate and the access time according to addition 

or removal of a cache in a multi-level cache structure 

(Table 2). In the experimental results, the hit rate (Fig. 

6) and the average access time (Fig. 7) of 128/8000 

exhibited comparatively superior performance than 

128/4000/8000 which shows why the fastest CPU among 

mobile devices has a 2-level cache.

In the experiment, a 3-level cache of 128/2000/4000 

and a 2-level cache of 128/4000, which both have the 

same last level cache size, were compared to observe 

the effect of removing a cache. Based on an LRU 

replacement policy that showed the best performance, 

the hit rate did not vary (Fig. 6); however, the access 

time was about 1.3 times lower for the 2-level cache 

compared to the 3-level cache (Fig. 7). Thus, the 

reduction of average access time can be observed if 

the level of cache is reduced. Note that this decrease 

in access time is only observed when the size of L2 

is equal to or larger than the size of L3 of a 3-level 

cache while maintaining the access speed. However, 

since it is difficult to maintain the high speed when 

the size of cache memory is increased, high technology 

is required to improve performance when L3 is 

removed.

Fig. 6. Hit rate according to cache levels, with 

some structures including a fourth cache level. 

The cache structures are displayed below.

           S7: 128/2000/4000, S8: 128/4000, 

           S9: 128/4000/8000, S10: 128/8000, 

           S11: 128/2000/4000/12000, 

           S12: 128/1000/2000/12000

Fig. 7. Access time according to cache levels, 

with some structures including a fourth cache 

level. The cache structures are displayed below.

           S7: 128/2000/4000, S8: 128/4000, 

           S9: 128/4000/8000, S10: 128/8000, 

           S11: 128/2000/4000/12000, 

           S12: 128/1000/2000/12000
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Furthermore, L4, the level 4 cache with a size of 

12,000KB which require 3s to access, was examined 

in the experiment. When 128/2000/4000/12000 was 

compared to 128/2000/4000, the hit rate increased 

about 3%, which seemed fair but the average access 

time drastically increased almost tenfold. However, 

reducing the size of upper-level caches by half 

(128/1000/2000/12000) exhibited similar hit rate and 

access time to 128/2000/4000/12000. Therefore, 

with the addition of L4, the reduction of upper-level 

cache size while maintaining the performance is 

possible. However, with the fact that addition of L4 

increases the average access time, the addition of a 

cache seems meaningless unless the access speed 

of L4 is increased. Furthermore, cache memory is 

known to have high power consumption [14, 15] 

while lowering battery consumption is a important 

factor on mobile devices.

Cache 

structure (KB)

Replacement 

policy

Hit rate 

(%)

Access 

time (s)

16/250/500

Random 59.4748 4.260334

LRU 58.8747 4.307847

FIFO 57.0499 4.486027

32/500/1000

Random 71.4501 3.089247

LRU 71.3455 3.090652

FIFO 69.0393 3.316597

64/1000/2000

Random 82.6045 1.986508

LRU 83.1376 1.924715

FIFO 81.6327 2.078204

128/2000/4000

Random 89.9194 1.240775

LRU 91.3542 1.091746

FIFO 90.0138 1.227332

256/4000/8000

Random 93.3883 0.866455

LRU 94.2565 0.771483

FIFO 93.5962 0.841765

128/4000

Random 88.8066 1.312185

LRU 91.3542 1.05888

FIFO 89.7929 1.214273

128/4000/8000

Random 93.3803 0.886838

LRU 94.2565 0.788966

FIFO 93.5945 0.860725

128/8000

Random 92.6575 0.938648

LRU 94.2565 0.777357

FIFO 93.4919 0.85547

128/2000/4000/

12000

Random 94.0897 18.08967

LRU 94.7254 16.1521

FIFO 94.452 17.00586

128/1000/2000/

12000

Random 93.8332 19.06359

LRU 94.7254 16.38825

FIFO 94.4329 17.30579

Table 2. Table describing hit rate and access time 

according to different cache structures

3. Cache Replacement Policies and the 

Performance

During the experiments above, the result according 

to the different replacement policies were compared 

(Table 2) to verify the fine performance of the commonly

-used LRU. In the results, the LRU policy had a higher 

hit rate and shorter access time compared to the other 

replacement policies, except for the case where the 

cache size was too small, making the use of a fine 

replacement policy meaningless. The LRU replacement 

policy displayed a 1.17% and 1.02% higher hit rate than 

the Random and FIFO replacement policy respectively. 

As the Random replacement policy has a Random 

replacement characteristic, it had a higher probability 

of evicting useful, reused data than the LRU 

replacement policy. The FIFO replacement policy 

performed worse than the Random replacement policy 

when the size of cache memory was small, but 

demonstrated the possibility of an improved perfor

mance over the Random replacement policy when the 

cache size is increased.

V. Conclusions

In this study, experiments were conducted to 

analyze factors that could increase the performance 

of mobile cache memory, including cache size, cache 

level, and the type of replacement policy. Subsequent 

results proved the importance of cache memories in 

mobile devices. In the simulation, the average access 

time was up to ten times lower when the cache size 

was 256/4000/8000 compared to when there was no 

cache. Adding an L4 cache level was inefficient owing 

to the slow access speed and high battery consump

tion rate of the cache memory. Removing L3 resulted

in superior performance but required high techno

logy. LRU was the most efficient replacement policy 

compared to the FIFO and Random replacement 

policies, except for the case where the cache size was 

too small and replacement algorithms were meanin

gless.
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