DOI QR코드

DOI QR Code

동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia

  • 전종안 (APEC 기후센터 기후사업본부 기후분석과) ;
  • 이은정 (APEC 기후센터 기후사업본부 기후분석과) ;
  • 김대하 (APEC 기후센터 기후사업본부 기후분석과) ;
  • 김선태 (APEC 기후센터 기후사업본부 기후분석과) ;
  • 이우섭 (APEC 기후센터 기후사업본부 기후분석과)
  • Chun, Jong Ahn (Climate Analytics Department, Climate Services and Research Division, APEC Climate Center) ;
  • Lee, Eunjeong (Climate Analytics Department, Climate Services and Research Division, APEC Climate Center) ;
  • Kim, Daeha (Climate Analytics Department, Climate Services and Research Division, APEC Climate Center) ;
  • Kim, Seon Tae (Climate Analytics Department, Climate Services and Research Division, APEC Climate Center) ;
  • Lee, Woo-Seop (Climate Analytics Department, Climate Services and Research Division, APEC Climate Center)
  • 투고 : 2020.03.24
  • 심사 : 2020.04.06
  • 발행 : 2020.06.30

초록

최근 증가하고 있는 이상기후현상으로 인한 사회·경제적 피해를 줄이기 위해 이상기후 감시가 필수적이다. 이 연구의 목적은 Noah 3.3 지면모형으로 추정한 토양수분자료를 활용하여 준실시간 주간 근역층 토양수분지수(Soil Moisture Index, SMI)를 산정하는데 있다. 동아시아영역(15-60°N, 70-150°E)에 대해 Noah 3.3 지면모형의 적용성을 평가하기 위해 양쯔강유역을 선정하였으며, 해당 유역에서 증발산과 현열을 FluxNet, FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, Generalized Complementary Relationship (GCR)자료를 이용하여 비교·평가하였다. 양쯔강 유역에서 Noah 지면모형으로 추정한 증발산은 FluxNet, FluxCom, GLEAM, ERA-5, GCR에 의한 증발산과 0.96이상의 매우 높은 결정계수의 값을 보였으며, 현열의 경우에는 FluxNet 현열 자료와 0.71의 결정계수로 증발산 보다 다소 낮은 값을 보였다. 주간 근역층 SMI 시계열로부터 2019년 7월부터 10월까지 중국의 동부지역에서 극한가뭄(Extreme drought)이 확장되는 현상이 관측되었다. 월별 극한가뭄 발생일수의 트렌드 분석결과, 우리나라의 경우 봄철에는 극한가뭄이 지난 20년 동안 대체로 감소하는 경향이 나타났으나, 가을철에는 한반도 전역에 걸쳐 증가하는 경향이 나타났다. 이 연구가 가뭄의 시·공간적 지속성 및 확장성과 최근 가뭄발생의 경향성 등을 종합적으로 분석하고 판단하여, 가뭄으로 인한 사회·경제적 피해를 줄이기 위한 적절한 대책 마련에 활용성이 클 것으로 기대된다.

An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

키워드

참고문헌

  1. Baier, W. (1969). "Concepts of soil moisture availability and their effect on soil moisture estimates from a meteorological budget." Agricultural Meteorology, Vol. 6, pp. 165-178. https://doi.org/10.1016/0002-1571(69)90002-8
  2. Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142.
  3. Chun, J.A., Kim, S.T., Lee, W.-S., and Kim, D. (2020). "Assessment of Noah land surface model-based soil moisture using GRACEobserved TWSA and TWSC." Journal of Korea Water Resources Association (forthcoming) (in Korean with English abstract), Vol. 53, No. 4, pp. 285-291 https://doi.org/10.3741/JKWRA.2020.53.4.285
  4. Chun, J.A., and Kim, D. (2019). "A drought assessment using the generalized complementary principle of evapotranspiration." Journal of Korea Water Resources Association, Vol. 52, No. 5, pp. 325-335. (in Korean with English abstract) https://doi.org/10.3741/JKWRA.2019.52.5.325
  5. Copernicus Climate Change Service (C3S). (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), assessed 5 January 2020, .
  6. Dai, A. (2010). "Drought under global warming: a review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, pp. 45-65. https://doi.org/10.1002/wcc.81
  7. Ek, M.B., Mitchell, K.E., Lin, Y., Rodgers, E., Grunman, P., Koren, V., Gayno, G., and Tarpley, J.D. (2003). "Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model." Journal of Geophysical Research, Vol. 108, No. D22, p. 8851.
  8. Esch, S., Korres, W., Rechenau, T.G., and Schneider, K. (2018). "Soil moisture index from ERS-SAR and its application to the analysis of spatial patterns in agricultural areas." Journal of Applied Remote Sensing, Vol. 12, No. 2, 022206.
  9. Gutman, G., and Ignatov, A. (1997). "The derivation of green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models." International Journal of Remote Sensing, Vol. 19, No. 8, pp. 1533-1543. https://doi.org/10.1080/014311698215333
  10. Hogg, E.H., Barr, A.G., and Black, T.A. (2013). "A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior." Agricultural and Forest Meteorology, Vol. 178-179, pp. 173-182. https://doi.org/10.1016/j.agrformet.2013.04.025
  11. Hunt, E.D., Hubbard, K.G., Wilhite, D.A., Arkebauer, T.J., and Dutcher, A.L. (2009). "The development and evaluation of a soil moisture index." International Journal of Climatology, Vol. 29, pp. 747-759. https://doi.org/10.1002/joc.1749
  12. Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B.E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E.J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C. (2011). "Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations." Journal of Geophysical Research, Vol. 116, G00J07, doi : 10.1029/2010JG001566.
  13. Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camp-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M. (2019). "The FLUXCOM ensemble of global land-atmosphere energy fluxes." Scientific Data, Vol. 6, No. 74, doi: 10.1038/s41597-019-0076-8.
  14. Kim, D., Lee, W.-S., Kim, S.-T., and Chun, J.A. (2019). "Historical drought assessment over the contiguous United States using the generalized complementary principle of evapotranspiration." Water Resources Research, Vol. 55, pp. 6244-6267, doi: 10.1029/2019WR024991.
  15. Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernandez-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C. (2017). "GLEAM v3: Satellite-based land evaporation and root-zone soil moisture." Geoscientific Model Development, Vol. 10, pp. 1903-1925. https://doi.org/10.5194/gmd-10-1903-2017
  16. Martnez-Fernandez, J., Conzalez-Zamora, A., Sanchez, N., and Cumuzzio, A. (2015). "A soil water based index as a suitable agricultural drought indicator." Journal of Hydrology, Vol. 522, pp. 265-273. https://doi.org/10.1016/j.jhydrol.2014.12.051
  17. Martnez-Fernandez, J., Conzalez-Zamora, A., Sanchez, N., Cumuzzio, A., and Herrero-Jimenez, C.M. (2016). "Satellite oil moisture for agricultural dourght monitoring: Assessment of the SMOS derived Soil Water Deficit Index." Remote Sensing of Environment, Vol. 177, pp. 277-286. https://doi.org/10.1016/j.rse.2016.02.064
  18. Miralles, D. G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J. H., Meesters, A.G.C.A., and Dolman, A.J. (2011). "Global land-surface evaporation estimated from satellite-based observations." Hydrology and Earth System Sciences, Vol. 15, pp. 453-469. https://doi.org/10.5194/hess-15-453-2011
  19. Mishra, A.K., Ines, A.V.M., Das, N.N., Khedun, C.P., Singh, V.P., Sivakumar, B., and Hansen, J.W. (2015). "Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study." Journal of Hydrology, Vol. 526. pp. 15-29. https://doi.org/10.1016/j.jhydrol.2014.10.038
  20. Narasimhan, B., and Srinivasan, R. (2005). "Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring." Agricultural and Forest Meteorology, Vol. 133, pp. 69-88. https://doi.org/10.1016/j.agrformet.2005.07.012
  21. Perkins, S.E., Argueso, D., and White, C.J. (2015). "Relationships between climate variability, soil moisture, and Australian heatwaves." Journal of Geophysical Research: Atmospheres, Vol. 120, pp. 8144-8164, doi: 10.1002/2015JD023592.
  22. Priestley, C.H., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  23. Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  24. Sridhar, V., Hubbard, K.G., You, J., and Hunt, E.D. (2008). "Development of the soil moisture index to quantify agricultural drought and its user friendliness in severity-area-duration assessment." Journal of Hydrometeorology, Vol. 9, pp. 660-676. https://doi.org/10.1175/2007JHM892.1
  25. Woli, P., Jones, J.W., Ingram, K.T., and Fraisse, C.W. (2012). "Agricultural reference index for drought (ARID)." Agronomy Journal, Vol. 104, pp. 287-300. https://doi.org/10.2134/agronj2011.0286
  26. Xia, Y., B. Cosgrove, A., Mitchell, K. E., Peters-Lidard, C. D., Ek, M. B., Kumar, S., Mocko, D., and Wei, H. (2016). "Basin-scale assessment of the land surface energy budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems." Journal of Geophysical Research: Atmospheres, Vol. 121, pp. 196-220, doi: 10.1002/2015JD023889.