References
- Abdollahi, S., Raeisi, J., Khalilianpour, M., Ahmadi, F., and Kisi, O. (2017). "Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques." Water Resources Management, Vol. 31, No. 15, pp. 4855-4874. https://doi.org/10.1007/s11269-017-1782-7
- Abrahart, R.J., and See, L. (2000). "Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments." Hydrological Processes, Vol. 14, No. 11‐12, pp. 2157-2172. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2157::AID-HYP57>3.0.CO;2-S
- Adamowski, J., and Sun, K. (2010). "Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds." Journal of Hydrology, Vol. 390, No. 1, pp. 85-91. https://doi.org/10.1016/j.jhydrol.2010.06.033
- Aichouri, I., Hani A., Bougherira, N., Djabri, L., Chaffai, H., and Lallahem, S. (2015). "River flow model using artificial neural networks." Energy Procedia, Vol. 74, pp. 1007-1014. https://doi.org/10.1016/j.egypro.2015.07.832
- Asadi, S., Shahrabi, J., Abbaszadeh, P., and Tabanmehr, S. (2013). "A new hybrid artificial neural networks for rainfall-runoff process modeling." Neurocomputing, Vol. 121, pp. 470-480. https://doi.org/10.1016/j.neucom.2013.05.023
- Badrzadeh, H., Sarukkalige, R., and Jayawardena, A.W. (2013). "Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting." Journal of Hydrology, Vol. 507, pp. 75-85. https://doi.org/10.1016/j.jhydrol.2013.10.017
- Biswas, R.K., and Jayawardena, A.W. (2014). "Water level prediction by artificial neural network in a flashy transboundary river of Bangladesh." Global Nest Journal, Vol. 16, No. 2, pp. 432-444. https://doi.org/10.30955/gnj.001226
- Chandwani, V., Vyas, S.K., Agrawal, V., and Sharma, G. (2015). "Soft computing approach for rainfall-runoff modelling: A review." Aquatic Procedia, Vol. 4, No. 2015, pp. 1054-1061. https://doi.org/10.1016/j.aqpro.2015.02.133
- Cigizoglu, H.K. (2003). "Estimation, forecasting and extrapolation of river flows by artificial neural networks." Hydrological Sciences Journal, Vol. 48, No. 3, pp. 349-361. https://doi.org/10.1623/hysj.48.3.349.45288
- Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O., and Quilty, J. (2019). "On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction." Agricultural and Forest Meteorology, Vol. 278, p. 107647. https://doi.org/10.1016/j.agrformet.2019.107647
- Gowda, C.C., and Mayya, S.G. (2014). "Comparison of back propagation neural network and genetic algorithm neural network for stream flow prediction." Journal of Computational Environmental Sciences, Vol. 2014, p. 290127.
- Günther, F., and Fritsch, S. (2010). "Neuralnet: Training of neural networks." The R journal, Vol. 2, No. 1, pp. 30-38. https://doi.org/10.32614/RJ-2010-006
- Guo, J., Zhou, J., Qin, H., Zou, Q., and Li, Q. (2011). "Monthly streamflow forecasting based on improved support vector machine model." Expert Systems with Applications, Vol. 38, No. 10, pp. 13073-13081. https://doi.org/10.1016/j.eswa.2011.04.114
- Holland, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, M.I., U.S.
- Imrie, C.E., Durucan, S., and Korre, A. (2000). "River flow prediction using artificial neural networks: Generalisation beyond the calibration range." Journal of Hydrology, Vol. 233, No. 1, pp. 138-153. https://doi.org/10.1016/S0022-1694(00)00228-6
- Jang, J.S.R. (1993). "ANFIS: Adaptive-network-based fuzzy inference system." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685. https://doi.org/10.1109/21.256541
- Jang, J.S.R., Sun, C.T., and Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Prentice-Hall, New Jersey, U.S.
- Kalteh, A.M. (2015). "Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting." Water Rsources Mnagement, Vol. 29, pp. 1283-1293. https://doi.org/10.1007/s11269-014-0873-y
- Kamruzzaman, M., Metcalfe, A.V., and Beecham, S. (2013). "Waveletbased rainfall-stream flow models for the southeast Murray Darling basin." Journal of Hydrologic Engineering, Vol. 19, No. 7, pp. 1283-1293. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000894
- Keskin, M.E., Taylan, D., and Terzi, O. (2006). "Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series." Hydrological Sciences Journal, Vol. 51, No. 4, pp. 588-598. https://doi.org/10.1623/hysj.51.4.588
- Kim, S., and Kim, H.S. (2008). "Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling." Journal of Hydrology, Vol. 351, No. 3, pp. 299-317. https://doi.org/10.1016/j.jhydrol.2007.12.014
- Kisi, O. (2011). "A combined generalized regression neural network wavelet model for monthly streamflow prediction." KSCE Journal of Civil Engineering, Vol. 15, No. 8, pp. 1469-1479. https://doi.org/10.1007/s12205-011-1004-4
- Krishna, B., Satyaji Rao, Y.R., and Nayak, P.C. (2011). "Time series modeling of river flow using wavelet neural networks." Journal of Water Resource and Protection, Vol. 3, pp. 50-59. https://doi.org/10.4236/jwarp.2011.31006
- Labat, D., Ababou, R., and Mangin, A. (2000). "Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses." Journal of Hydrology, Vol. 238, pp. 149-178. https://doi.org/10.1016/S0022-1694(00)00322-X
- Liu, W.C., and Chung, C.E. (2014). "Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system." Water, Vol. 6, No. 6, pp. 1642-1661. https://doi.org/10.3390/w6061642
- Lohani, A.K., Goel, N.K., and Bhatia, K.K.S. (2006). "Takagi-Sugeno fuzzy inference system for modeling stage-discharge relationship." Journal of Hydrology, Vol. 331, pp. 146-160. https://doi.org/10.1016/j.jhydrol.2006.05.007
- Mallat, S.G. (1989). "A theory for multiresolution signal decomposition: The wavelet representation." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693. https://doi.org/10.1109/34.192463
- Mamdani, E.H., and Assilian, S. (1975). "An experiment in linguistic synthesis with a fuzzy logic controller." International Journal of Man-machine Studies, Vol. 7, No. 1, pp. 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Martins, O.Y., Sadeeq, M.A., and Ahaneku, I.E. (2011). "ARMA modelling of Benue river flow dynamics: Comparative study of PAR model." Open Journal of Modern Hydrology, Vol. 1, pp. 1-9. https://doi.org/10.4236/ojmh.2011.11001
- Moosavi, V., Vafakhah, M., Shirmohammadi, B., and Behnia, N. (2013). "A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods." Water Resources Management, Vol. 27, pp. 1301-1321. https://doi.org/10.1007/s11269-012-0239-2
- Moradkhani, H., Hsu, K.L., Gupta, H.V., and Sorooshian, S. (2004). "Improved streamflow forecasting using self-organizing radial basis function artificial neural networks." Journal of Hydrology, Vol. 295, No. 1, pp. 246-262. https://doi.org/10.1016/j.jhydrol.2004.03.027
- Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models I: A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Nasr, A., and Bruen, M. (2008). "Development of neuro-fuzzy models to account for temporal and spatial variations in a lumped rainfall-runoff model." Journal of Hydrology, Vol. 349, pp. 277-290. https://doi.org/10.1016/j.jhydrol.2007.10.060
- Nourani, V., Alami, M.T., and Aminfar, M.H. (2009). "A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation." Engineering Applications of Artificial Intelligence, Vol. 22, No. 3, pp. 466-472. https://doi.org/10.1016/j.engappai.2008.09.003
- Nourani, V., Baghanam, A.H., Adamowski, J., and Kisi, O. (2014). "Applications of hybrid wavelet-artificial intelligence models in hydrology: A review." Journal of Hydrology, Vol. 514, pp. 358-377. https://doi.org/10.1016/j.jhydrol.2014.03.057
- Nourani, V., Hosseini, B.A., Adamowski, J., and Gebremicheal, M. (2013). "Using self- organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling." Journal of Hydrology, Vol. 476, pp. 228-243. https://doi.org/10.1016/j.jhydrol.2012.10.054
- Partal, T. (2009). "Modelling evapotranspiration using discrete wavelet transform and neural networks." Hydrological Processes, Vol. 23, No. 25, pp. 3545-3555. https://doi.org/10.1002/hyp.7448
- Partal, T., and Kisi, O. (2007). "Wavelet and neuro-fuzzy conjunction model for precipitation forecasting." Journal of Hydrology, Vol. 342, pp. 199-212. https://doi.org/10.1016/j.jhydrol.2007.05.026
- Quilty, J., and Adamowski, J. (2018). "Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework." Journal of Hydrology, Vol. 563, pp. 336-353. https://doi.org/10.1016/j.jhydrol.2018.05.003
- Ravansalar, M., Rajaee, T., and Kisi, O. (2017). "Wavelet-linear genetic programming: A new approach for modeling monthly streamflow." Journal of Hydrology, Vol. 549, pp. 461-475. https://doi.org/10.1016/j.jhydrol.2017.04.018
- Rezaie-Balf, M., Kim, S., Fallah, H., and Alaghmand, S. (2019). "Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea." Journal of Hydrology, Vol. 572, pp. 470-485. https://doi.org/10.1016/j.jhydrol.2019.03.046
- Sahay, R.R., and Srivastava, A. (2014). "Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network." Water Resources Management, Vol. 28, pp. 301-317. https://doi.org/10.1007/s11269-013-0446-5
- Samsudin, R., Saad, P., and Shabri, A. (2011). "River flow time series using least squares support vector machines." Hydrology and Earth System Sciences, Vol. 15, pp. 1835-1852. https://doi.org/10.5194/hess-15-1835-2011
- Seo, Y., Kim, S., Kisi, O., and Singh, V.P. (2015). "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques." Journal of Hydrology, Vol. 520, pp. 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050
- Seo, Y., Kim, S., and Singh, V. (2018). "Machine learning models coupled with variational mode decomposition: A new approach for modeling daily rainfall-runoff." Atmosphere, Vol. 9, No. 7, p. 251. https://doi.org/10.3390/atmos9070251
- Shoaib, M., Shamseldin, A,Y., and Melville, B,W. (2014). "Comparative study of different wavelet based neural network models for rainfall-runoff modeling." Journal of Hydrology, Vol. 515, pp. 47-58. https://doi.org/10.1016/j.jhydrol.2014.04.055
- Sivakumar, B., Berndtsson, R., Olsson, J., and Jinno, K. (2001). "Evidence of chaos in the rainfall- runoff process." Hydrological Sciences Journal, Vol. 46, No. 1, pp. 131-145. https://doi.org/10.1080/02626660109492805
- Stone, M. (1974). "Cross-validatory choice and assessment of statistical predictions." Journal of the royal statistical society. Series B (Methodological), Vol. 36, No. 2, pp. 111-147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
- Takagi, T., and Sugeno, M. (1985). "Fuzzy identification of systems and its applications to modeling and control." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 15, No. 1, pp. 116-132. https://doi.org/10.1109/TSMC.1985.6313399
- Talei, A., Chye, C.L.H., and Wong, T.S.W. (2010). "Evaluation of rainfall and discharge inputs used by adaptive network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling." Journal of Hydrology, Vol. 391, pp. 248-262. https://doi.org/10.1016/j.jhydrol.2010.07.023
- Tiwari, M.K., and Chatterjee, C. (2010). "Development of an accurate and reliable hourly flood forecasting model using waveletbootstrap-ANN (WBANN) hybrid approach." Journal of Hydrology, Vol. 394, pp. 458-470. https://doi.org/10.1016/j.jhydrol.2010.10.001
- Zakhrouf, M., Bouchelkia, H., and Stamboul, M. (2016). "Neurowavelet (WNN) and neuro-fuzzy (ANFIS) systems for modeling hydrological time series in arid areas. A case study: The catchment of Aïn Hadjadj (Algeria)." Desalination and Water Treatment, Vol. 57, No. 37, pp. 17182-17194. https://doi.org/10.1080/19443994.2015.1085908
- Zakhrouf, M., Bouchelkia, H., Stamboul, M., Kim, S., and Heddam, S. (2018). "Time series forecasting of river flow using an integrated approach of wavelet multi-resolution analysis and evolutionary data-driven models. A case study: Sebaou River (Algeria)." Physical Geography, Vol. 39, No. 6, pp. 506-522. https://doi.org/10.1080/02723646.2018.1429245
- Zakhrouf, M., Bouchelkia, H., Stamboul, M., and Kim, S. (2020). "Novel hybrid approaches based on evolutionary strategy for streamflow forecasting in the Chellif River, Algeria." Acta Geophysica, Vol. 68, No. 1, pp. 167-180. https://doi.org/10.1007/s11600-019-00380-5
- Zhang, G., Patuwo, B.E., and Hu, M.Y. (1998). "Forecasting with artificial neural networks: The state of the art." International Journal of Forecasting, Vol. 14, No. 1, pp. 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
- Zhao, X., Guo, X., Luo, J., and Tan, X. (2018). "Efficient detection method for foreign fibers in cotton." Information Processing in Agriculture, Vol. 5, No. 3, pp. 320-328. https://doi.org/10.1016/j.inpa.2018.04.002