DOI QR코드

DOI QR Code

Role of Chest Radiographs and CT Scans and the Application of Artificial Intelligence in Coronavirus Disease 2019

코로나바이러스감염증 2019에서 흉부X선사진 및 CT의 역할과 인공지능의 적용

  • Seung-Jin Yoo (Department of Radiology, Hanyang University Medical Center, Hanyang University College of Medicine) ;
  • Jin Mo Goo (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Soon Ho Yoon (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital)
  • 유승진 (한양대학교 의과대학 한양대학교병원 영상의학과) ;
  • 구진모 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 윤순호 (서울대학교 의과대학 서울대학교병원 영상의학과)
  • Received : 2020.07.22
  • Accepted : 2020.09.15
  • Published : 2020.11.01

Abstract

Coronavirus disease (COVID-19) has threatened public health as a global pandemic. Chest CT and radiography are crucial in managing COVID-19 in addition to reverse transcription-polymerase chain reaction, which is the gold standard for COVID-19 diagnosis. This is a review of the current status of the use of chest CT and radiography in COVID-19 diagnosis and management and anㄷ introduction of early representative studies on the application of artificial intelligence to chest CT and radiography. The authors also share their experiences to provide insights into the future value of artificial intelligence.

코로나바이러스감염증-19 (coronavirus disease 2019; 이하 COVID-19)는 전 세계적 대유행 질환으로 인류 보건을 위협하고 있다. 흉부 CT 및 흉부X선사진은 COVID-19의 표준 진단검사인 역전사 중합효소 연쇄반응에 더하여 COVID-19 진단 및 중증도 평가에서 중요한 역할을 하고 있다. 본 종설에서는 흉부 CT 및 흉부X선사진의 COVID-19 폐렴에 대한 현재 역할에 대하여 살펴보고 인공지능을 적용한 대표적 초기 연구들과 저자들의 경험을 소개함으로써 향후 활용가치에 대해 살펴보고자 한다.

Keywords

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-733 https://doi.org/10.1056/NEJMoa2001017
  2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-544 https://doi.org/10.1038/s41564-020-0695-z
  3. World Health Organization. Coronavirus disease (COVID-19): situation report, 162. Geneva: World Health Organization 2020
  4. Cheng MP, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman M, et al. Diagnostic testing for severe acute respiratory syndrome-related coronavirus 2: a narrative review. Ann Intern Med 2020;172:726-734 https://doi.org/10.7326/M20-1301
  5. Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner Society. Radiology 2020;296:172-180 https://doi.org/10.1148/radiol.2020201365
  6. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA 2020;323:2249-2251 https://doi.org/10.1001/jama.2020.8259
  7. Kim H, Hong H, Yoon SH. Diagnostic performance of CT and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysis. Radiology 2020;296:E145-E155 https://doi.org/10.1148/radiol.2020201343
  8. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843-1844 https://doi.org/10.1001/jama.2020.3786
  9. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med 2020;173:262-267 https://doi.org/10.7326/M20-1495
  10. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 2020;296:E15-E25 https://doi.org/10.1148/radiol.2020200490
  11. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a teport of 1014 cases. Radiology 2020;296:E32-E40 https://doi.org/10.1148/radiol.2020200642
  12. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 2020;296:E115-E117 https://doi.org/10.1148/radiol.2020200432
  13. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020;295:202-207 https://doi.org/10.1148/radiol.2020200230
  14. Song F, Shi N, Shan F, Zhang Z, Shen J, Lu H, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020;295:210-217 https://doi.org/10.1148/radiol.2020200274
  15. Yoon SH, Lee KH, Kim JY, Lee YK, Ko H, Kim KH, et al. Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea. Korean J Radiol 2020;21:494-500 https://doi.org/10.3348/kjr.2020.0132
  16. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020;295:685-691 https://doi.org/10.1148/radiol.2020200463
  17. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20:425-434 https://doi.org/10.1016/S1473-3099(20)30086-4
  18. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA-secondary publication. J Thorac Imaging 2020;35:219-227 https://doi.org/10.1097/RTI.0000000000000524
  19. Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TW, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology 2019;296:E72-E78 https://doi.org/10.1148/radiol.2020201160
  20. Vancheri SG, Savietto G, Ballati F, Maggi A, Canino C, Bortolotto C, et al. Radiographic findings in 240 patients with COVID-19 pneumonia: time-dependence after the onset of symptoms. Eur Radiol 2020:1-9
  21. Choi H, Qi X, Yoon SH, Park SJ, Lee KH, Kim JY, et al. Extension of coronavirus disease 2019 (COVID-19) on chest CT and implications for chest radiograph interpretation. Radiology: Cardiothoracic Imaging 2020;2:e200107
  22. Schiaffino S, Tritella S, Cozzi A, Carriero S, Blandi L, Ferraris L, et al. Diagnostic performance of chest X-ray for COVID-19 pneumonia during the SARS-CoV-2 pandemic in Lombardy, Italy. J Thorac Imaging 2020;35:W105-W106 https://doi.org/10.1097/RTI.0000000000000533
  23. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 2020;323:1239-1242 https://doi.org/10.1001/jama.2020.2648
  24. World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Available at. https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavi-rus-disease-2019-(covid-19). Published Feb 28, 2020. Accessed Jul 22, 2020
  25. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782-793 https://doi.org/10.1001/jama.2020.12839
  26. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-481 https://doi.org/10.1016/S2213-2600(20)30079-5
  27. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180:934-943 https://doi.org/10.1001/jamainternmed.2020.0994
  28. Matos J, Paparo F, Mussetto I, Bacigalupo L, Veneziano A, Perugin Bernardi S, et al. Evaluation of novel coronavirus disease (COVID-19) using quantitative lung CT and clinical data: prediction of short-term outcome. Eur Radiol Exp 2020;4:39
  29. Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiology: Cardiothoracic Imaging 2020;2:e200047
  30. Lanza E, Muglia R, Bolengo I, Santonocito OG, Lisi C, Angelotti G, et al. Quantitative chest CT analysis in COVID-19 to predict the need for oxygenation support and intubation. Eur Radiol 2020 [in press] doi: https://doi.org/10.1007/s00330-020-07013-2
  31. Lyu P, Liu X, Zhang R, Shi L, Gao J. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: identifying critical cases based on CT characteristics. Invest Radiol 2020;55:412-421 https://doi.org/10.1097/RLI.0000000000000689
  32. Lee SE, Kim YS. Clinical and radiological findings of coronavirus disease 2019 pneumonia: 51 adult patients from a single center in Daegu, South Korea. J Korean Soc Radiol 2020;81:591-603 https://doi.org/10.3348/jksr.2020.81.3.591
  33. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med 2020;180:1081-1089 https://doi.org/10.1001/jamainternmed.2020.2033
  34. Toussie D, Voutsinas N, Finkelstein M, Cedillo MA, Manna S, Maron SZ, et al. Clinical and chest radiography features determine patient outcomes in young and middle age adults with COVID-19. Radiology 2020 [in press] doi: https://doi.org/10.1148/radiol.2020201754
  35. Jin KN, Yoon SH, Park CH, Beck KS, Do KH, Yong HS. KSR/KSTR guidelines for the use of diagnostic imaging for COVID-19. J Korean Soc Radiol 2020;81:577-582 https://doi.org/10.3348/jksr.2020.81.3.577
  36. American College of Radiology. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. Available at. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection. Published Mar 11, 2020. Accessed Jul 22, 2020
  37. Society of Thoracic Radiology. STR/ASER COVID-19 position statement. Available at. https://thoracicrad.org/wp-content/uploads/2020/03/STR-ASER-Position-Statement-1.pdf. Accessed Jul 22, 2020
  38. Hope MD, Raptis CA, Henry TS. Chest computed tomography for detection of coronavirus disease 2019 (COVID-19): don't rush the science. Ann Intern Med 2020;173:147-148 https://doi.org/10.7326/M20-1382
  39. Herpe G, Naudin M, Lederlin M, Enikeeva F, Boumendil O, Cassagnes L, et al. COVID-19 impact assessment on the French radiological centers: a nationwide survey. Eur Radiol 2020 [in press] doi: https://doi.org/10.1007/s00330-020-07035-w
  40. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 2020 [in press] doi: https://doi.org/10.1148/radiol.2020200905
  41. Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020;56:2000775
  42. Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med 2020;26:1224-1228 https://doi.org/10.1038/s41591-020-0931-3
  43. Bai HX, Wang R, Xiong Z, Hsieh B, Chang K, Halsey K, et al. Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT. Radiology 2020;296:E156-E165 https://doi.org/10.1148/radiol.2020201491
  44. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks. Comput Biol Med 2020;121:103795
  45. Song J, Wang H, Liu Y, Wu W, Dai G, Wu Z, et al. End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT. Eur J Nucl Med Mol Imagin 2020:1-9
  46. Wu X, Hui H, Niu M, Li L, Wang L, He B, et al. Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: a multicentre study. Eur J Radiol 2020;128:109041
  47. Jaiswal A, Gianchandani N, Singh D, Kumar V, Kaur M. Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J Biomol Struct Dyn 2020:1-8
  48. Kang H, Xia L, Yan F, Wan Z, Shi F, Yuan H, et al. Diagnosis of coronavirus disease 2019 (COVID-19) with structured latent multi-view representation learning. IEEE Trans Med Imaging 2020;39:2606-2614 https://doi.org/10.1109/TMI.2020.2992546
  49. Wang J, Bao Y, Wen Y, Lu H, Luo H, Xiang Y, et al. Prior-attention residual learning for more discriminative COVID-19 screening in CT images. IEEE Trans Med Imaging 2020;39:2572-2583 https://doi.org/10.1109/TMI.2020.2994908
  50. Ouyang X, Huo J, Xia L, Shan F, Liu J, Mo Z, et al. Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia. IEEE Trans Med Imaging 2020;39:2595-2605 https://doi.org/10.1109/TMI.2020.2995508
  51. Wang X, Deng X, Fu Q, Zhou Q, Feng J, Ma H, et al. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans Med Imaging 2020;39:2615-2625 https://doi.org/10.1109/TMI.2020.2995965
  52. Han Z, Wei B, Hong Y, Li T, Cong J, Zhu X, et al. Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans Med Imaging 2020;39:2584-2594 https://doi.org/10.1109/TMI.2020.2996256
  53. Ko H, Chung H, Kang WS, Kim KW, Shin Y, Kang SJ, et al. COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation. J Med Internet Res 2020;22:e19569
  54. Ni Q, Sun ZY, Qi L, Chen W, Yang Y, Wang L, et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol 2020:1-11
  55. Hu S, Gao Y, Niu Z, Jiang Y, Li L, Xiao X, et al. Weakly supervised deep learning for covid-19 infection detection and classification from CT images. IEEE Access 2020;8:118869-118883 https://doi.org/10.1109/ACCESS.2020.3005510
  56. Wang G, Liu X, Li C, Xu Z, Ruan J, Zhu H, et al. A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE Trans Med Imaging 2020;39:2653-2663 https://doi.org/10.1109/TMI.2020.3000314
  57. Zhou L, Li Z, Zhou J, Li H, Chen Y, Huang Y, et al. A rapid, accurate and machine-agnostic segmentation and quantification method for CT-based COVID-19 diagnosis. IEEE Trans Med Imaging 2020;39:2638-2652 https://doi.org/10.1109/TMI.2020.3001810
  58. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys Eng Sci Med 2020;43:915-925 https://doi.org/10.1007/s13246-020-00888-x
  59. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 2020;8:91916-91923 https://doi.org/10.1109/ACCESS.2020.2994762
  60. Oh Y, Park S, Ye JC. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging 2020;39:2688-2700 https://doi.org/10.1109/TMI.2020.2993291
  61. Altan A, Karasu S. Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique. Chaos Solitons Fractals 2020;140:110071
  62. Rahimzadeh M, Attar A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform Med Unlocked 2020;19:100360
  63. Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V. Application of deep learning for fast detection of COVID-19 in X-rays using nCOVnet. Chaos Solitons Fractals 2020;138:109944
  64. Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Computer Methods and Programs in Biomedicine 2020;196:105608
  65. Yoo SJ, Qi X, Inui S, Park SJ, Kim H, Jeong YJ, et al. Automatic CT quantification of coronavirus disease 2019 pneumonia: an international collaborative development, validation, and clinical implication. Research Square 2020 [in press] doi: https://doi.org/10.21203/rs.3.rs-48290/v1
  66. Bell DJ. COVID-19. Available at. https://radiopaedia.org/articles/covid-19-3. Accessed May 17, 2020
  67. Jun M, Cheng G, Yixin W, Xingle A, Jiantao G, Ziqi Y, et al. COVID-19 CT lung and infection segmentation dataset 2020. Available at. https://zenodo.org/record/3757476#.Xp_VDMgzbPt. Published Apr 20, 2020. Accessed May 17, 2020
  68. Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, et al. Chest CT findings in cases from the cruise ship "Diamond Princess" with coronavirus disease 2019 (COVID-19). Radiology: Cardiothoracic Imaging 2020;2:e200110
  69. Covid Data Save Lives. HMhospitales; 2020. Available at. https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version. Accessed May 17, 2020
  70. U.S. Food and Drug Administration. Enforcement policy for imaging systems during the coronavirus disease 2019 (COVID-19) public health emergency (docket number: FDA-2020-D-1138). Rockville, MD: U.S. Food and Drug Administration 2020
  71. Jeong YJ, Kim YH, KICC-19 Working Group. Korean imaging cohort of COVID-19: potential role in education and research. J Korean Soc Radiol 2020;81:608-609 https://doi.org/10.3348/jksr.2020.81.3.608