Acknowledgement
The authors gratefully acknowledge the support of the Distinguished Young Scientists of Jiangsu Province (Grant. BK20190013), the National Natural Science Foundation of China (Grants. 51978154 and 51608258).
References
- Atha, D.J. and Jahanshahi, M.R. (2018), "Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection", Struct. Health Monit., 17(5), 1110-1128. https://doi.org/10.1177/1475921717737051.
- Bao, Y., Shi, Z., Wang, X. and Li, H. (2018), "Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring", Struct. Health Monit., 17(4), 823-836. https://doi.org/10.1177/1475921717721457.
- Bao, Y., Tang, Z., Li, H. and Zhang, Y. (2019). "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monit., 18(2), 401-421. https://doi.org/10.1177/1475921718757405.
- Bengio, Y., Simard, P. and Frasconi, P. (1994), "Learning long-term dependencies with gradient descent is difficult", IEEE T. Neural Networ., 5(2), 157-166. https://doi.org/10.1109/72.279181.
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning‐based crack damage detection using convolutional neural networks", Comput.‐Aided Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chen, Z., Bao, Y., Li, H. and Spencer, B.F. (2019), "LQD-RKHS-based distribution-to-distribution regression methodology for restoring the probability distributions of missing SHM data", Mech. Syst. Signal Pr., 121, 655-674. https://doi.org/10.1016/j.ymssp.2018.11.052.
- Ding, Y.L., Zhao, H.W. and Li, A.Q. (2017), "Temperature effects on strain influence lines and dynamic load factors in a steel-truss arch railway bridge using adaptive FIR filtering", J. Perform. Constr. Fac., 31(4), 04017024. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001026.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/ 10.1162/neco.1997.9.8.1735.
- Huang, H.B., Yi, T.H., Li, H.N. and Liu, H. (2020). "Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions", J. Bridge Eng., 25(4), 04020013. https://doi/org/10.1061/(ASCE)BE.1943-5592.0001538.
- Huang, Y., Beck, J.L., Wu, S. and Li, H. (2016), "Bayesian compressive sensing for approximately sparse signals and application to structural health monitoring signals for data loss recovery", Probabilist. Eng. Mech., 46, 62-79. https://doi.org/10.1016/j.probengmech.2016.08.001.
- Kingma, D.P. and Ba, J. (2015), "Adam: A method for stochastic optimization", ICLR 2015, San Diego, USA, May.
- Li, L., Liu, G., Zhang, L. and Li, Q. (2018). "Deep learning-based sensor fault detection using S-Long Short Term 1)Memory Networks", Struct. Monit. Maint., 5(1), 51-65. https://doi.org/10.12989/smm.2018.5.1.051.
- Ni, Y.Q. and Li, M. (2016), "Wind pressure data reconstruction using neural network techniques: A comparison between BPNN and GRNN", Measurement., 88, 468-476. https://doi.org/10.1016/j.measure ment.2016.04.049.
- Pei, X.Y., Yi, T.H., Qu, C.X. and Li, H.N. (2019). "Conditional information entropy based sensor placement method considering separated model error and measurement noise", J. Sound Vib., 449: 389-404. https://doi.org/10.1016/j.jsv.2019.02.035.
- Qu, C.X., Yi, T.H. and Li, H.N. (2019). "Mode identification by eigensystem realization algorithm through virtual frequency response function", Struct. Control Health Monit., 26(10), e2429. https://doi.org/10.1002/stc.2429.
- Rafiei, M.H. and Adeli, H. (2018). "A novel unsupervised deep learning model for global and local health condition assessment of structures", Eng. Struct., 156, 598-607. https://doi.org/10.1016/j.engstruct.2017.10.070.
- Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neural networks., 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003.
- Sola, J. and Sevilla, J. (1997), "Importance of input data normalization for the application of neural networks to complex industrial problems", IEEE T. Nuclear Sci., 44(3), 1464-1468. https://doi.org/10.1109/23.589532.
- Thadikemalla, V.S.G. and Gandhi, A.S. (2018), "A data loss recovery technique using compressive sensing for structural health monitoring applications", KSCE J. Civil Eng., 22(12), 5084-5093. https://doi.org/10.1007/s12205-017-2070-z.
- Wan, H. and Ni, Y.Q. (2019), "Bayesian multi-task learning methodology for reconstruction of structural health monitoring data", Struct. Health Monit., 18(4), 1282-1309. https://doi.org/10.1177/1475921718794953.
- Ye, X.W., Su, Y.H., Xi, P.S. and Liu, H. (2017), "Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine", Comput. Concrete., 20(5), 555-562. https://doi.org/10.12989/cac.2017.20.5.555.
- Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. and Chen, C. (2017), "Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network", Comput. - Aided Civil Infrastruct. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297.
- Zhao, H.W., Ding, Y.L., Li, A.Q., Ren, Z.Z. and Yang, K. (2019), "Live-load strain evaluation of the prestressed concrete box-girder bridge using deep learning and clustering", Struct. Health Monit., 1475921719875630. https://doi.org/10.1177/1475921719875630.
- Zhou, Z.H. (2016), Machine Learning, Tsinghua University Press, Beijing, China.
Cited by
- Big data platform for health monitoring systems of multiple bridges vol.7, pp.4, 2020, https://doi.org/10.12989/smm.2020.7.4.345
- A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring vol.11, pp.21, 2020, https://doi.org/10.3390/app112110072