과제정보
The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant No.: 51879153), the Natural Science Foundation of Shanodng Province (Grant No.: ZR201808080053) and the China Postdoctoral Science Foundation (Grant No.: 2019M662361).
참고문헌
- Ajamzadeh, M.R., Sarfarazi, V., Haeri, H. and Dehghani, H. (2018), "The effect of micro parameters of PFC software on the model calibration", Smart Struct. Syst., 22(6), 643-662. https://doi.org/10.12989/sss.2018.22.6.643.
- Bahaaddini, M., Hagan, P., Mitra, R. and Hebblewhite, B.K. (2016), "Numerical study of the mechanical behavior of nonpersistent jointed rock masses", Int. J. Geomech., 16(1), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000510.
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115, https://doi.org/10.1016/j.compgeo.2013.02.003.
- Bahrani, N. and Kaiser, P.K. (2017), "Estimation of confined peak strength of crack-damaged rocks", Rock Mech. Rock Eng., 50(2), 309-326. https://doi.org/10.1007/s00603-016-1110-1.
- Bock, S. and Prusek, S. (2015), "Numerical study of pressure on dams in a backfilled mining shaft based on PFC3D code", Comput. Geotech., 66, 230-244. https://doi.org/10.1016/j.compgeo.2015.02.005.
- Chen, Q., Zhang, C., Yang, C., Ma, C. and Pan, Z. (2019), "Effect of fine-grained dipping interlayers on mechanical behavior of tailings using discrete element method", Eng. Anal. Boundary Elem., 104, 288-299. https://doi.org/10.1016/j.enganabound.2019.03.029.
- Cundall, P.A. and Strack, O.D.L. (1979), "Discrete numerical model for granular assemblies", Geotechnique, 29(1), 41-65. https://doi.org/10.1680/geot.1979.29.1.47.
- De Silva, V.R.S. and Ranjith, P.G. (2020), "A study of rock joint influence on rock fracturing using a static fracture stimulation method", J. Mech. Phys. Solids, 137, 21. https://doi.org/10.1016/j.jmps.2019.103817.
- Gracia, F., Villard, P. and Richefeu, V. (2019), "Comparison of two numerical approaches (DEM and MPM) applied to unsteady flow", Comput. Particle Mech., 6(4), 591-609. https://doi.org/10.1007/s40571-019-00236-1.
- Guo, W.B., Hu, B., Cheng, J.L. and Wang, B.F. (2020), "Modeling time-dependent behavior of hard sandstone using the DEM method", Geomech. Eng., 20(6), 517-525. https://doi.org/10.12989/gae.2020.20.6.517.
- Haeri, H., Sarfarazi, V., Zhu, Z.M. and Moosavi, E. (2019), "Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials", Struct. Eng. Mech., 69(1), 11-20. https://doi.org/10.12989/sem.2019.69.1.011.
- Haeri, H., Sarfarazi, V., Zhu, Z.M. and Nejati, H.R. (2019), "Numerical simulations of fracture shear test in anisotropy rocks with bedding layers", Adv. Concrete Construct., 7(4), 241-247. https://doi.org/10.12989/acc.2019.7.4.241.
- Hasanpour, R., Ozcelik, Y., Yilmazkaya, E. and Sohrabian, B. (2016), "DEM modeling of a monowire cutting system", Arab. J. Geosci., 9(20), 11. https://doi.org/10.1007/s12517-016-2710-5.
- Hashemi, S.S., Momeni, A.A. and Melkoumian, N. (2014), "Investigation of borehole stability in poorly cemented granular formations by discrete element method", J. Petrol. Sci. Eng., 113, 23-35. https://doi.org/10.1016/j.petrol.2013.11.031.
- Hofmann, H., Babadagli, T., Yoon, J.S., Blocher, G. and Zimmermann, G. (2016), "A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements", Geothermics, 64, 362-381. https://doi.org/10.1016/j.geothermics.2016.06.016.
- Jafri, T.H. and Yoo, H. (2018), "REV application in DEM analysis of non-vibrational rock splitting method to propose feasible borehole spacing", Appl. Sci., 8(3), 17, https://doi.org/10.3390/app8030335.
- Khazaei, C., Hazzard, J. and Chalaturnyk, R. (2015), "Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling", Comput. Geotech., 67, 94-102. https://doi.org/10.1016/j.compgeo.2015.02.012.
- Kwok, Y. and Bolton, M.D. (2010), "DEM simulations of thermally activated creep in soils", Geotechnique, 60(6), 425-433. https://doi.org/10.1680/geot.2010.60.6.425.
- Lin, P., Li, S.C., Xu, Z.H., Wang, J. and Huang, X. (2019), "Water inflow prediction during heavy rain while tunneling through Karst fissured zones", Int. J. Geomech., 19(8), 04019093. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001478.
- Lotidis, M.A., Nomikos, P.P. and Sofianos, A.I. (2019), "Numerical study of the fracturing process in marble and plaster hollow plate specimens subjected to uniaxial compression", Rock Mech. Rock Eng., 52(11), 4361-4386. https://doi.org/10.1007/s00603-019-01884-8.
- Manouchehrian, A., Sharifzadeh, M., Marji, M.F. and Gholamnejad, J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.
- Mehranpour, M.H., Kulatilake, P., Ma, X.G. and He, M.C. (2018), "Development of new three-dimensional rock mass strength criteria", Rock Mech. Rock Eng., 51(11), 3537-3561. https://doi.org/10.1007/s00603-018-1538-6.
- Meidani, M., Meguid, M.A. and Chouinard, L.E. (2018), "Estimating earth loads on buried pipes under axial loading condition: Insights from 3D discrete element analysis", Int. J. Geo-Eng., 9(1), 5. https://doi.org/10.1186/s40703-018-0073-3.
- Potyondy, D. (2018), "Material-Modeling Support in PFC [fistPkg26]", Itasca Consulting Group, Inc., Minneapolis, Minnesota, U.S.A.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Poulsen, B.A., Adhikary, D. and Guo, H. (2018), "Simulating mining-induced strata permeability changes", Eng. Geol., 237, 208-216. https://doi.org/10.1016/j.enggeo.2018.03.001.
- Sarfarazi, V., Haeri, H., Shemirani, A.B., Zhu, Z.M. and Marji, M.F. (2018), "Experimental and numerical simulating of the crack separation on the tensile strength of concrete", Struct. Eng. Mech., 66(5), 569-582. https://doi.org/10.12989/sem.2018.66.5.569.
- Shemirani, A.B., Haeri, H., Sarfarazi, V., Akbarpour, A. and Babanouri, N. (2018), "The discrete element method simulation and experimental study of determining the mode I stress-intensity factor", Struct. Eng. Mech., 66(3), 379-386. https://doi.org/10.12989/sem.2018.66.3.379.
- Shi, C., Yang, W., Yang, J. and Chen, X. (2019), "Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code", Granul. Matter, 21(2), 38. https://doi.org/10.1007/s10035-019-0889-3.
- Wu, X.J. (2017), "Study on mechanism of seepage and water-inrush from filled Karst conduit in tunnel", China University of Mining and Technology, Beijing, China.
- Xu, Z.H., Huang, X., Li, S.C., Lin, P., Shi, X.S. and Wu, J. (2020a), "A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave", Bull. Eng. Geol. Environ., 79(2), 1097-1111. https://10.1007/s10064-019-01609-9.
- Xu, Z.H., Lin, P., Xing, H.L. and Wang, J. (2020b), "Mathematical modeling of cumulative erosion ratio for suffusion in soils", Proc. Inst. Civ. Eng. Geotech. Eng., 1-11. https://doi.org/10.1680/jgeen.19.00082.
- Xu, Z.H., Wang, W.Y., Lin, P., Wang, X.T. and Yu, T.F. (2020c), "Buffering effect of overlying sand layer technology for dealing with rockfall disaster in tunnels and a case study", Int. J. Geomech., 20(8), 04020127. https://10.1061/(ASCE)GM.1943-5622.0001751.
- Yang, B., Yue, J. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Comput., 23(6), 607-631. https://doi.org/10.1108/02644400610680333.
- Zhou, Y., Wu, S., Jiao, J. and Zhang, X. (2011), "Research on mesomechanical parameters of rock and soil mass based on BP neural network", Rock Soil Mech., 32(12), 3821-3826. https://doi.org/10.16285/j.rsm.2011.12.010.
피인용 문헌
- Failure characteristics and mechanical mechanism of study on red sandstone with combined defects vol.24, pp.2, 2021, https://doi.org/10.12989/gae.2021.24.2.179