DOI QR코드

DOI QR Code

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang (Laboratory 3SR, Grenoble Alpes University) ;
  • Peng, Da (Department of Civil and Environmental Engineering, University of Cincinnati) ;
  • Dias, Daniel (Laboratory 3SR, Grenoble Alpes University)
  • Received : 2020.03.25
  • Accepted : 2020.05.23
  • Published : 2020.07.10

Abstract

Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by the China Scholarship Council (201708130080).

References

  1. Abuhajar, O., El Naggar, H. and Newson, T. (2015), "Seismic soilculvert interaction", Can. Geotech. J., 52(11), 1649-1667. https://doi.org/10.1139/cgj-2014-0494.
  2. Acharya, R., Han, J. and Parsons, R.L. (2016b), "Numerical analysis of low-fill box culvert under rigid pavement subjected to static traffic loading", Int. J. Geomech., 16, 1-14. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000652.
  3. Acharya, R., Han, J., Brennan, J.J., Parsons, R.L. and Khatri, D. K. (2016a), "Structural response of a low-fill box culvert under static and traffic loading", J. Perform. Construct. Facil., 30, 1-7. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000690.
  4. An, X., Shawky, A. and Maekawa, K. (1997), "The collapse mechanism of a subway station during the Great Hanshin earthquake", Cement Concrete Compos., 19, 241-257. https://doi.org/10.1016/S0958-9465(97)00014-0.
  5. Anderson, D.G., Martin, G.R., Lam, I. and Wang, J.N. (2008), "NCHRP 611-Seismic analysis and design of retaining walls, buried structures, slopes, and embankments", Washington, D.C., U.S.A.
  6. Bilotta, E., Lanzano, G., Madabhushi, S.P.G. and Silvestri, F. (2014), "A numerical Round Robin on tunnels under seismic actions", Acta Geotechnica, 9(4), 563-579. https://doi.org/10.1007/s11440-014-0330-3.
  7. Bobet, A. (2010), "Drained and undrained response of deep tunnels subjected to far-field shear loading", Tunn. Undergr. Sp. Technol., 25(1), 21-31. https://doi.org/10.1016/j.tust.2009.08.001.
  8. Bobet, A., Fernandez, G., Huo, H. and Ramirez, J. (2008), "A practical iterative procedure to estimate seismic-induced deformations of shallow rectangular structures", Can. Geotech. J., 45, 923-938. https://doi.org/10.1139/T08-026.
  9. Cilingir, U. and Madabhushi, S.P.G. (2011), "Effect of depth on the seismic response of square tunnels", Soils Found., 51, 449-457. https://doi.org/10.3208/sandf.51.449.
  10. Debiasi, E., Gajo, A. and Zonta, D. (2013), "On the seismic response of shallow-buried rectangular structures", Tunn. Undergr. Sp. Technol., 38, 99-113. https://doi.org/10.1016/j.tust.2013.04.011.
  11. Deng, Y. H., Dashti, S., Hushmand, A., Davis, C. and Hushmand, B. (2016), "Seismic response of underground reservoir structures in sand: Evaluation of Class-C and C1 numerical simulations using centrifuge experiments", Soil Dyn. Earthq. Eng., 85, 202-216. https://doi.org/10.1016/j.soildyn.2016.04.003.
  12. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014a), "2D numerical investigations of twin tunnel interaction", Geomech. Eng., 6(3), 263-275. https://doi.org/10.12989/gae.2014.6.3.263.
  13. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2015), "Behaviour of segmental tunnel linings under seismic loads studied with the hyperstatic reaction method", Soil Dyn. Earthq. Eng., 79, 108-117. https://doi.org/10.1016/j.soildyn.2015.09.007.
  14. Do, N. A., Oreste, P., Dias, D., Antonello, C. and Djeran-Maigre, I. (2014b), "Stress and strain state in the segmental linings during mechanized tunnelling", Geomech. Eng., 7(1), 75-85. https://doi.org/10.12989/gae.2014.7.1.075.
  15. Ertugrul, O.L. (2016), "Numerical modeling of the seismic racking behavior of box culverts in dry cohesionless soils", KSCE J. Civ. Eng., 20(5), 1737-1746. https://doi.org/10.1007/s12205-015-0235-1.
  16. Golpasand, M.B., Do, N.A., Dias, D. and Nikudel, M.R. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.
  17. Hashash, Y.M.A., Hook, J.J., Schmidt, B. and Yao, J.I.C. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Technol., 16, 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
  18. Huo, H., Bobet, A., Fernandez, G. and Ramirez, J. (2005), "Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai station", J. Geotech. Geoenviron. Eng., 131(12), 1522-1533. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1522).
  19. Huo, H., Bobet, A., Fernandez, G. and Ramirez, J. (2006), "Analytical solution for deep rectangular structures subjected to far-field shear stresses", Tunn. Undergr. Sp. Technol., 21(6), 613-625. https://doi.org/10.1016/j.tust.2005.12.135.
  20. Hushmand, A., Dashti, S., Davis, C., Hushmand, B., McCartney, J. S., Hu, J. and Lee, Y. (2016a), "Seismic performance of underground reservoir structures: insight from centrifuge modeling on the influence of backfill soil type and geometry", J. Geotech. Geoenviron. Eng., 142(11), 04016058-1. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001544.
  21. Hushmand, A., Dashti, S., Davis, C., Hushmand, B., Zhang, M., Ghayoomi, M., McCartney, J.S., Lee, Y. and Hu, J. (2016b), "Seismic performance of underground reservoir structures: Insight from centrifuge modeling on the influence of structure stiffness", J. Geotech. Geoenviron. Eng., 142(7), 04016020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001477.
  22. Hushmand, A., Dashti, S., Davis, C., McCartney, J.S. and Hushmand, B. (2016c), "A centrifuge study of the influence of site response, relative stiffness, and kinematic constraints on the seismic performance of buried reservoir structures", Soil Dyn. Earthq. Eng., 88, 427-438. https://doi.org/10.1016/j.soildyn.2016.06.011.
  23. Iidai, H., Hirotoi, T. and Iwafuji, M. (1996), "Damage to Daikai subway station", Soils Found., 36, 283-300. https://doi.org/10.3208/sandf.36.Special_283.
  24. Itasca. (2011), Software Manual of FLAC Version 7.0, Itasca Consulting Group.
  25. Kim, K. and Yoo, C.H. (2005), "Design loading on deeply buried box culverts", J. Geotech. Geoenviron. Eng., 131(1), 20-27. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(20).
  26. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Div., 99, 421-427. https://doi.org/10.1061/JSFEAQ.0001885
  27. Kwok, A.O.L., Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z.L. and Yang, Z.H. (2007), "Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", J. Geotech. Geoenviron. Eng., 133(11), 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385).
  28. Lancioni, G., Bernrtti, R., Quagliarini, E. and Tonti, L. (2014), "Effects of underground cavities on the frequency spectrum of seismic shear waves", Adv. Civ. Eng., 934284. https://doi.org/10.1155/2014/934284.
  29. Li, T.Z. and Yang, X.L. (2019), "Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion", Geomech. Eng., 18(3), 235-245. https://doi.org/10.12989/gae.2019.18.3.235.
  30. Liu, N.N., Huang, Q.B., Fan, W., Ma, Y.J. and Peng, J.B. (2018), "Seismic responses of a metro tunnel in a ground fissure site", Geomech. Eng., 15(2), 775-781. https://doi.org/10.12989/gae.2018.15.2.775.
  31. Moss, R.E.S. and Crosariol, V.A. (2013), "Scale model shake table testing of an underground tunnel cross section in soft clay", Earthq. Spect., 29(4), 1413-1440. https://doi.org/10.1193/070611EQS162M.
  32. Owen, G.N. and Scholl, R.E. (1981), FHWA/RD-80/195-Earthquake Engineering of Large Underground Structures.
  33. Parra-Montesinos, G.J., Bobet, A. and Ramirez, J.A. (2006), "Evaluation of soil-structure interaction and structural collapse in Daikai subway station during Kobe earthquake", ACI Struct. J., 103(1), 113-122.
  34. Penzien, J. (2000), "Seismically induced racking of tunnel linings", Earthq. Eng. Struct. Dyn., 29(5), 683-691. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<683::AID-EQE932>3.0.CO;2-1.
  35. Penzien, J. and Wu, C.L. (1998), "Stresses in linings of bored tunnels", Earthq. Eng. Struct. Dyn., 27(3), 283-300. https://doi.org/10.1002/(SICI)1096-9845(199803)27:3<283::AID-EQE732>3.0.CO;2-T.
  36. Sadek, M. and Shahrour, I. (2006), "Influence of the head and tip connection on the seismic performance of micropiles", Soil Dyn. Earthq. Eng., 26(5), 461-468. https://doi.org/10.1016/j.soildyn.2005.10.003.
  37. Seylabi, E. E., Jeong, C., Dashti, S., Hushmand, A. and Taciroglu, E. (2018), "Seismic response of buried reservoir structures: A comparison of numerical simulations with centrifuge experiments", Soil Dyn. Earthq. Eng., 109, 89-101. https://doi.org/10.1016/j.soildyn.2018.03.003.
  38. Shahrour, I., Khoshnoudian, F., Sadek, M. and Mroueh, H. (2010), "Elastoplastic analysis of the seismic response of tunnels in soft soils", Tunn. Undergr. Sp. Technol., 25(4), 478-482. https://doi.org/10.1016/j.tust.2010.01.006.
  39. Sharma, S. and Judd, W.R. (1991), "Underground opening damage from earthquakes", Eng. Geol., 30, 263-276. https://doi.org/10.1016/0013-7952(91)90063-Q.
  40. Sun, Q. Q. and Dias, D. (2019b), "Seismic behavior of circular tunnels: Influence of the initial stress state", Soil Dyn. Earthq. Eng., 126, 105808. https://doi.org/10.1016/j.soildyn.2019.105808.
  41. Sun, Q.Q., Dias, D. and e Sousa, L.R. (2020), "Soft soil layertunnel interaction under seismic loading", Tunn. Undergr. Sp. Technol., 98, 103329. https://doi.org/10.1016/j.tust.2020.103329.
  42. Sun, Q.Q., Dias, D., Guo, X. and Li, P. (2019b), "Numerical study on the effect of a subway station on the surface ground motion", Comput. Geotech., 111, 243-254. https://doi.org/10.1016/j.compgeo.2019.03.026.
  43. Sun, Q.Q. and Dias, D. (2018), "Significance of Rayleigh damping in nonlinear numerical seismic analysis of tunnels", Soil Dyn. Earthq. Eng., 115, 489-494. https://doi.org/10.1016/j.soildyn.2018.09.013.
  44. Sun, Q.Q. and Dias, D. (2019a), "Assessment of stress relief during excavation on the seismic tunnel response by the pseudostatic method", Soil Dyn. Earthq. Eng., 117, 384-397. https://doi.org/10.1016/j.soildyn.2018.09.019.
  45. Sun, Q.Q., Bo, J.S. and Dias, D. (2019a), "Viscous damping effects on the seismic elastic response of tunnels in three sites", Geomech. Eng., 18(6), 639-650. https://doi.org/10.12989/gae.2019.18.6.639.
  46. Sun, Q.Q., Bo, J.S., Sun, Y.W. and Zhang, Z P. (2016), "A state-ofthe-art review of seismic response analysis of tunnels", World Earthq. Eng., 32, 159-169 (in Chinese). https://doi.org/1007-6069(2016)02-0159-11.
  47. Sun, Q.Q., Dias, D. and e Sousa, L.R. (2019c), "Impact of an underlying soft soil layer on tunnel lining in seismic conditions", Tunn. Undergr. Sp. Technol., 90, 293-308. https://doi.org/10.1016/j.tust.2019.05.011.
  48. Tsinidis, G. (2017), "Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking", Tunn. Undergr. Sp. Technol., 62, 1-22. https://doi.org/10.1016/j.tust.2016.11.003.
  49. Tsinidis, G. and Pitilakis, K. (2018), "Improved R-F relations for the transversal seismic analysis of rectangular tunnels", Soil Dyn. Earthq. Eng., 107, 48-65. https://doi.org/10.1016/j.soildyn.2018.01.004.
  50. Tsinidis, G., Pitilakis, K. and Madabhushi, S.P.G. (2016a), "On the dynamic response of square tunnels in sand", Eng. Struct., 125, 419-437. https://doi.org/10.1016/j.engstruct.2016.07.014.
  51. Tsinidis, G., Rovithis, E., Pitilakis, K. and Chazelas, J. (2015), "Dynamic response of square tunnels: Centrifuge testing and validation of existing design methodologies", Geotechnique, 65, 401-417. https://doi.org/10.1680/geot.SIP.15.P.004.
  52. Tsinidis, G., Rovithis, E., Pitilakis, K. and Chazelas, J.L. (2016b), "Seismic response of box-type tunnels in soft soil: Experimental and numerical investigation", Tunn. Undergr. Sp. Technol., 59, 199-214. https://doi.org/10.1016/j.tust.2016.07.008.
  53. Ulgen, D., Saglam, S. and Ozkan, M.Y. (2015a), "Assessment of racking deformation of rectangular underground structures by centrifuge tests", Geotechnique Lett., 5(4), 261-268. https://doi.org/10.1680/jgele.15.00097.
  54. Ulgen, D., Saglam, S. and Ozkan, M.Y. (2015b), "Dynamic response of a flexible rectangular underground structure in sand: Centrifuge modeling", Bull. Earthq. Eng., 13(9), 2547-2566. https://doi.org/10.1007/s10518-015-9736-z.
  55. Wang, C.J. (2011), "Seismic racking of a dual-wall subway station box embedded in soft soil strata", Tunn. Undergr. Sp. Technol., 26(1), 83-91. https://doi.org/10.1016/j.tust.2010.05.003.
  56. Wang, J.N. (1993), Seismic Design of Tunnels: A Simple State-ofthe-Art Design Approach, Parsons, Brinckerhoff, Quade and Douglas Inc., New York, U.S.A.
  57. Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R. and Huang, T.H. (2001), "Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake", Tunn. Undergr. Sp. Technol., 16(3), 133-150. https://doi.org/10.1016/S0886-7798(01)00047-5.
  58. Yang, X.L. and Huang, F. (2011), "Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion", Tunn. Undergr. Sp. Technol., 26(6), 686-691. https://doi.org/10.1016/j.tust.2011.05.008.
  59. Yang, X.L. and Wang, J.M. (2011), "Ground movement prediction for tunnels using simplified procedure", Tunn. Undergr. Sp. Technol., 26(3), 462-471. https://doi.org/10.1016/j.tust.2011.01.002.
  60. Yang, X.L. and Yin, J.H. (2005), "Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 42(4), 550-560. https://doi.org/10.1016/j.ijrmms.2005.03.002.
  61. Yang, X.L. and Yin, J.H. (2010), "Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion", Rock Mech. Rock Eng., 39, 505-511. https://doi.org/10.1007/s00603-009-0044-2.
  62. Youd, T.L. and Beckman, C.J. (1996), "Highway culvert performance during past earthquake", NCEER-96-0015, Buffalo, New York, U.S.A.
  63. Yu, H.T., Chen, J.T., Bobet, A. and Yuan, Y. (2016), "Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake", Tunn. Undergr. Sp. Technol., 54, 102-116. https://doi.org/10.1016/j.tust.2016.02.008.
  64. Zhang, B., Ma, Z.Y., Wang, X., Zhang, J.S. and Peng, W.P. (2020), "Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method", Geomech. Eng., 20(1), 43-54. https://doi.org/10.12989/gae.2020.20.1.043.
  65. Zhang, B., Wang, X., Zhang, J.S. and Meng, F. (2017), "Threedimensional limit analysis of seismic stability of tunnel face with quasi-static method", Geomech. Eng., 13(2), 301-318. https://doi.org/10.12989/gae.2017.13.2.301.