References
- Ahn, J., You, H., Ryu, J., & Chang, D., 2017. Strategy for selecting an optimal propulsion system of a liquefied hydrogen tankers. International Journal of Hydrogen Energy, 42, pp.5366-5380. https://doi.org/10.1016/j.ijhydene.2017.01.037
- Ball, M. Basile, A. & Veziroglu, T.N., 2015. Compendium of hydrogen energy - volume 4: hydrogen use, safety and the hydrogen economy. Woodhead Publishing, Cambridge: UK.
- Behrendt, C., & Kucharski, T. 1997. Comparison of model test with ship sea trial results for a given vessel serie. Transaction on the Built Environment, 24, pp.277-284.
- Bialystocki, N., & Konovessis, D., 2016. On the estimation of ship's fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1, pp.157-166. https://doi.org/10.1016/j.joes.2016.02.001
- Degiuli, N. et al., 2017. Increase of Ship Fuel consumption due to the added resistance in Waves. Journal of Sustainable Development of Energy, Water and Environment System, 5(1), pp.1-14. https://doi.org/10.13044/j.sdewes.d5.0129
- DSME, 2008. Wind tunnel tests LNG Carrier 173K, Unpublished confidential document.
- DSME, 2017. Electric load analysis report of 173K LNG Carrier, Unpublished confidential document.
- Fujii, J. & Tsuda, T., 1961. Experimental researchs on rudder performance (2). Journal of the Society of Naval Architects of Japan, 110, pp.31-42.
- Fujii, J. & Tsuda, T., 1962. Experimental researches on rudder performance (3). Journal of the Society of Naval Architects of Japan, 111, pp.51-58.
- Kijima, K. Nakiri, Y. Tsutsui, Y. & Matsunaga, M., 1990. Prediction method of ship manoeuvrability in deep and shallow water. MARSIM & ICSM 1990, Tokyo, Japan, 4-7 June 1990, pp.311-319.
- Kim, M. et al., 2017. Estimation of added resistance and ship speed loss in a sea way. Ocean Engineering, 141, pp.465-476. https://doi.org/10.1016/j.oceaneng.2017.06.051
- Luo, S., Ma, N., & Hirakawa, Y., 2016. Evaluation of resistance increase and speed loss of a ship in wind and waves. Journal of Ocean Engineering and Science, 1, pp.212-218. https://doi.org/10.1016/j.joes.2016.04.001
- MAN Diesel & Turbo, 2017. MAN B&W G70ME-C9.5-GI-TII Project Guide Electronically Controlled Dual Fuel Two-stroke Engines Edition 1.0, Copenhagen, Denmark.
- Schinas, O., & Bulter, M., 2016. Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, pp.84-96. https://doi.org/10.1016/j.oceaneng.2016.04.031
- Wartisila, 2019. Wartisila 34DF product guide, Copenhagen, Finland.
- Wiesmann, A., 2010. Slow steaming - a viable long-term option? WARTSILA TECHNICAL JOURNAL (https://www.wartsila.com/docs/default-source/Service-catalogue-files/Engine-Services---2-stroke/slow-steaming-a-viable-long-term-option.pdf).
- You, Y., 2018. A study on the maneuverability of a twin-screw LNGC under machinery failure. Ocean Engineering, 155, pp.324-350. https://doi.org/10.1016/j.oceaneng.2018.02.066
- You, Y., 2019. Different approaches for estimating the full-scale performance of a ship based on 3-DOF maneuvering equations of motion: given speed, RPM or power. Journal of the Society of Naval Architects of Korea, 56(5), pp.428-439.
- You, Y. & Choi, J., 2017. A numerical study on the maneuverability of a twin-screw LNG carrier under single propeller failure. Journal of the Society of Naval Architects of Korea, 54(3), pp.204-214. https://doi.org/10.3744/SNAK.2017.54.3.204
- You, Y., Choi, J., & Lee, D., 2020. Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage. International Journal of Naval Architecture and Ocean Engineering, 12, pp.184-198. https://doi.org/10.1016/j.ijnaoe.2019.09.001
- You, Y., Kim, J., & Seo, M., 2018a. Prediction of an actual RPM and engine power of an LNGC based on full-scale measurement data. Ocean Engineering, 147, pp.496-516. https://doi.org/10.1016/j.oceaneng.2017.10.054
- You, Y., Lee, J., & Kim, I., 2018b, Prediction of the efficient speed of an LNGC with design condition from a direct cost evaluation considering the hydrodynamic characteristics and equipment operation. Ocean Engineering, 168, pp.23-40. https://doi.org/10.1016/j.oceaneng.2018.09.011
- Young, I.R., 1999. Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology, 19, pp.931-950. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O