DOI QR코드

DOI QR Code

Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3

  • Issa, Shams A.M. (Physics Department, Faculty of Science, University of Tabuk) ;
  • Ali, Atif Mossad (Physics Department, Faculty of Science, King Khalid University) ;
  • Tekin, H.O. (Uskudar University, Vocational School of Health Services, Radiotherapy Department) ;
  • Saddeek, Y.B. (Physics Department, Faculty of Science, Al-Azhar University) ;
  • Al-Hajry, Ali (Physics Department, Faculty of Science, King Khalid University) ;
  • Algarni, Hamed (Physics Department, Faculty of Science, King Khalid University) ;
  • Susoy, G. (Istanbul University, Faculty of Science, Department of Physics)
  • 투고 : 2019.11.08
  • 심사 : 2019.11.18
  • 발행 : 2020.06.25

초록

In this study, nuclear radiation shielding and rigidity parameters of Y (0.1-x)B0.6Bi1.8O3La2x glassy system were investigated in order to determine it's suitability for use as nuclear radiation shielding materials. Therefore, a group of bismuth borate glass samples with La2O3 additive were synthesized using the technique of melt quenching. According to the results, the increase of the La2O3 additive increases the density of the glass samples and the mass attenuation coefficient (μm) values, whereas the half-value layer (HVL) and mean free path (MFP) values decrease. The effective atomic number (Zeff) is also enhanced with an increment of both mass removal cross section for neutron (ΣR) and absorption neutron scattering cross section (σabs). In addition to the other parameters, rigidity parameter values were theoretically examined. The increase of La2O3 causes some other important magnitudes to increase. These are the average crosslink density, the number of bonds per unit volume, as well as the stretching force constant values of these glass samples. These results are in concordance with the increase of elastic moduli in terms of the Makishima-Mackenzie model. This model showed an increase in the rigidity of the glass samples as a function of La2O3.

키워드

참고문헌

  1. H.O. Tekin, MCNP-X Monte Carlo code application for mass attenuation co-efficients of concrete at different energies by modeling $3{\times}3$ inch NaI(Tl) detector and comparison with XCOM and Monte Carlo data, Sci. Technol. Nucl. Install. (2016), https://doi.org/10.1155/2016/6547318. Article ID 6547318, 7 pages.
  2. H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code, Appl. Radiat. Isot. 121 (2017) 122-125, https://doi.org/10.1016/j.apradiso.2016.12.040.
  3. H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, Nucl. Sci. Tech. 28 (2017) 95, https://doi.org/10.1007/s41365-017-0253-4.
  4. H.O. Tekin, M.I. Sayyed, Shams A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code, Radiat. Phys. Chem. 150 (2018) 95-100, https://doi.org/10.1016/j.radphyschem.2018.05.002.
  5. F. Akman, M.I. Sayyed, M.R. Kacal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV, J. Alloy. Comp. 772 (2019) 516-524, https://doi.org/10.1016/j.jallcom.2018.09.177, 25 January.
  6. Y.B. Saddeek, K. Aly, G. Abbady, N. Afify, K.S. Shaaban, A. Dahshan, Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y 2 O 3), J. Non-Cryst. Solids 454 (2016) 13-18, https://doi.org/10.1016/j.jnoncrysol.2016.10.023.
  7. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass, J. Non-Cryst. Solids 512 (2019) 140-147, https://doi.org/10.1016/j.jnoncrysol.2019.03.004.
  8. H.O. Tekin, L.R.P. Kassab, Ozge Kilicoglu, Evellyn Santos Magalhaes, Shams A.M. Issa, Guilherme Rodrigues da Silva Mattos. Newly developed tellurium oxide glasses for nuclear shielding applications: an extended investigation, J. Non-Cryst. Solids (2019), https://doi.org/10.1016/j.jnoncrysol.2019.119763. Available online 11 November.
  9. H.O. Tekin, Shams A.M. Issa, E. Kavaz, E.E. Altunsoy Guclu, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications, Mater. Res. Express 6 (2019) 115212, https://doi.org/10.1088/2053-1591/ab4cb5.
  10. H.O. Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, Ozge Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses, Ceram. Int. 45 (2019) 24664-24674, https://doi.org/10.1016/j.ceramint.2019.08.204.
  11. H.M. Gomaa, M.I. Sayyed, H.O. Tekin, G. Lakshminarayana, A.H. EL-Dosokey, Correlate the structural changes to gamma radiation shielding performance evaluation for some calcium bismuth-borate glasses containing Nb2O5, Phys. B Condens. Matter 567 (2019) 109-112, https://doi.org/10.1016/j.physb.2018.11.011.
  12. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, Kawa M. Kaky, M.I. Sayyed, A Comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647, https://doi.org/10.1016/j.compositesb.2019.02.022.
  13. Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses, J. Non-Cryst. Solids (2019), https://doi.org/10.1016/j.jnoncrysol.2018.12.013. Available Online: 21 February.
  14. S. Singh, G. Kalia, K. Singh, Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses, J. Mol. Struct. 1086 (2015) 239-245, https://doi.org/10.1016/j.molstruc.2015.01.031.
  15. G. Kaur, M. Kumar, A. Arora, O.P. Pandey, K. Singh, Influence of Y2O3 on structural and optical properties of SiO2-BaO-ZnO-xB2O3-(10-x) Y2O3 glasses and glass ceramics, J. Non-Cryst. Solids 357 (2011) 858-863, https://doi.org/10.1016/j.jnoncrysol.2010.11.103.
  16. H. Deters, A.S.S. de Camargo, C.N. Santos, C.R. Ferrari, A.C. Hernandes, A. Ibanez, M.T. Rinke, H. Eckert, Structural characterization of rare-earth doped yttrium aluminoborate laser glasses using solid state NMR, J. Phys. Chem. C 113 (2009) 16216-16225, https://doi.org/10.1021/jp9032904.
  17. M.A. Hughes, T. Suzuki, Y. Ohishi, Spectroscopy of bismuth-doped lead-aluminum-germanate glass and yttrium-aluminum-silicate glass, J. Non-Cryst. Solids 356 (2010) 2302-2309, https://doi.org/10.1016/j.jnoncrysol.2010.03.043.
  18. S. Karki, C.R. Kesavulu, H.J. Kim, J. Kaewkhao, N. Chanthima, Y. Ruangtaweep, Physical, optical and luminescence properties of B2O3-SiO2-Y2O3-CaO glasses with Sm3+ions for visible laser applications, J. Lumin. 197 (2018) 76-82, https://doi.org/10.1016/j.jlumin.2018.01.015.
  19. M.C. Rao, G.R. Kumar, Influence of TiO2 on structural, luminescent and conductivity investigations of CaF2-CaO-Y2O3-B2O3-P2O5 glasses, Optik 179 (2019) 1109-1117, https://doi.org/10.1016/j.ijleo.2018.10.163.
  20. F. Lofaj, R. Satet, M.J. Hoffmann, A.R. de Arellano Lopez, Thermal expansion and glass transition temperature of the rare-earth doped oxynitride glasses, J. Eur. Ceram. Soc. 24 (2004) 3377-3385, https://doi.org/10.1016/j.jeurceramsoc.2003.10.012.
  21. Y. Hao, Y. Dai, Influence of Y 2 O 3 on the structure and luminescence of Eu 2+ doped borosilicate glasses, J. Non-Cryst. Solids 474 (2017) 32-36, https://doi.org/10.1016/j.jnoncrysol.2017.08.023.
  22. Shamsan S. Obaid, Dhammajot K. Gaikwad, Pravina P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  23. D.K. Gaikwad, M.I. Sayyed, S.N. Boteward, Shamsan S. Obaid, Z.Y. Khattari, U.P. Gawai, Feras Afsaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503 (2019) 158-168, https://doi.org/10.1016/j.jnoncrysol.2018.09.038.
  24. Shamsan S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahrough, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defects Solids 173 (2018) 11-12, https://doi.org/10.1080/10420150.2018.1505890, 900-914.
  25. S. Issa, M. Sayyed, M. Kurudirek, Investigation of gamma radiation shielding properties of some zinc tellurite glasses, J. Phys. Sci. 27 (2016) 97-119, https://doi.org/10.21315/jps2016.27.3.7.
  26. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solids 72 (2011) 245-251, https://doi.org/10.1016/j.jpcs.2011.01.007.
  27. M.F. Kaplan, Concrete Radiation Shielding, John Wiley & Sons, Inc, New York, 1989.
  28. V.V. Awasarmol, D.K. Gaikwad, Shamsan S. Obaid, P.P. Pawar, Gamma radiation studies on organic nonlinear optical materials in the energy range 122-1330 keV, Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. (2019) 1-6, https://doi.org/10.1007/s40010-019-00636-1.
  29. H.C. Manjunatha, L. Seenappa, C. B.M, K.N. Sridhar, C. Hanumantharayappa, Gamma, X-ray and neutron shielding parameters for the Al-based glassy alloys, Appl. Radiat. Isot. 139 (2018) 187-194, https://doi.org/10.1016/j.apradiso.2018.05.014.
  30. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.
  31. R. Bagheri, A.K. Moghaddam, S.P. Shirmardi, B. Azadbakht, M. Salehi, Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO, J. Non-Cryst. Solids 479 (2018) 62-71, https://doi.org/10.1016/j.jnoncrysol.2017.10.006.
  32. M.I. Sayyed, S.A.M. Issa, M. Buyikyildiz, M. Dong, Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code, Radiat. Phys. Chem. 150 (2018) 1-8, https://doi.org/10.1016/j.radphyschem.2018.04.014.
  33. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO 2 -ZnO-NiO glasses, Mater. Chem. Phys. 212 (2018) 12-20, https://doi.org/10.1016/j.matchemphys.2018.01.058.
  34. M.I. Sayyed, S.A.M. Issa, H.O. Tekin, Y.B. Saddeek, Comparative study of gamma-ray shielding and elastic properties of BaO-Bi2O3-B2O3 and ZnO-Bi2O3-B2O3 glass systems, Mater. Chem. Phys. 217 (2018), https://doi.org/10.1016/j.matchemphys.2018.06.034.
  35. S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides, Results Phys. 9 (2018) 206-210, https://doi.org/10.1016/j.rinp.2018.02.039.
  36. S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine, Prog. Nucl. Energy 100 (2017) 276-282, https://doi.org/10.1016/j.pnucene.2017.06.016.
  37. R. Bagheri, A. Khorrami Moghaddam, H. Yousefnia, Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data, Nucl. Eng. Technol. 49 (2017) 216-223, https://doi.org/10.1016/j.net.2016.08.013.
  38. H.O. Tekin, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code, Results in Physics 12 (2019) 1797-1804, https://doi.org/10.1016/j.rinp.2019.02.017.
  39. M. Celikbilek Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, Evaluation of physical, structural properties and shielding parameters for K 2 O-WO 3 -TeO 2 glasses for gamma ray shielding applications, J. Alloy. Comp. 714 (2017) 278-286, https://doi.org/10.1016/j.jallcom.2017.04.223.
  40. A. Saeed, Y.H. Elbashar, R.M. El shazly, Optical properties of high density barium borate glass for gamma ray shielding applications, Opt. Quant. Electron. 48 (2016) 1, https://doi.org/10.1007/s11082-015-0274-3.
  41. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, S.A.M. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses, J. Mater. Sci. Mater. Electron. 28 (2016) 4064-4074, https://doi.org/10.1007/s10854-016-6022-z.
  42. S.A.M. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems, Compos. B Eng. 167 (2019) 231-240, https://doi.org/10.1016/j.compositesb.2018.12.029.
  43. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength, J. Univ. Chem. Technol. Met. 45 (2010) 219-250.
  44. B. Bridge, N.D. Patel, D.N. Waters, On the elastic constants and structure of the pure inorganic oxide glasses, Phys. Status Solidi 77 (1983) 655-668, https://doi.org/10.1002/pssa.2210770231.
  45. Y.B. Saddeek, Structural analysis of alkali borate glasses, Phys. B Condens. Matter 344 (2004) 163-175, https://doi.org/10.1016/j.physb.2003.09.254.
  46. A. Makishima, J.D. Mackenzie, Direct calculation of Young's moidulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45, https://doi.org/10.1016/0022-3093(73)90053-7.
  47. A. Alatawi, A.M. Alsharari, S.A.M. Issa, M. Rashad, A.A.A. Darwish, Y.B. Saddeek, H.O. Tekin, Improvement of mechanical properties and radiation shielding performance of Al-Bi-BO3 glasses using yttria: an experimental investigation, Ceram. Int. (2019), https://doi.org/10.1016/j.ceramint.2019.10.069. Available Online 9 October.
  48. Yasser B. Saddeek, Shams A.M. Issa, T. Alharbi, K. Aly, Mahmoud Ahmad, H.O. Tekin, Mechanical and nuclear shielding properties of sodium cadmium borate glasses: impact of cadmium oxide additive, Ceram. Int. (2019), https://doi.org/10.1016/j.ceramint.2019.09.254. Available online 26 September.

피인용 문헌

  1. Synergistic effect of serpentine mineral on Li2B4O7 glasses: optical, structural and nuclear radiation shielding properties vol.126, pp.3, 2020, https://doi.org/10.1007/s00339-020-3397-8
  2. Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: effect of boron mineral additive vol.126, pp.4, 2020, https://doi.org/10.1007/s00339-020-3446-3
  3. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and nuclear radiation shielding properties of [α-Fe3+O(OH)]-doped lithium borate glasses vol.126, pp.7, 2020, https://doi.org/10.1007/s00339-020-03683-3
  4. Mechanical and nuclear radiation shielding properties of different boro-tellurite glasses: a comprehensive investigation on large Bi2O3 concentration vol.95, pp.8, 2020, https://doi.org/10.1088/1402-4896/ab9bde
  5. Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation vol.8, pp.3, 2021, https://doi.org/10.1088/2053-1591/abeb4e
  6. Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation vol.53, pp.5, 2020, https://doi.org/10.1016/j.net.2020.11.009
  7. Fabrication and characterization of barium based bioactive glasses in terms of physical, structural, mechanical and radiation shielding properties vol.47, pp.15, 2020, https://doi.org/10.1016/j.ceramint.2021.04.188
  8. Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu vol.14, pp.19, 2020, https://doi.org/10.3390/ma14195894
  9. Influence of La-impurities and plasma treatment on the structural and optical properties of some bismuth calcium borate glasses vol.53, pp.11, 2021, https://doi.org/10.1007/s11082-021-03318-8
  10. Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study vol.14, pp.21, 2020, https://doi.org/10.3390/ma14216668
  11. The significant role of CeO2 content on the radiation shielding performance of Fe2O3-P2O5 glass-ceramics: Geant4 simulations study vol.96, pp.11, 2021, https://doi.org/10.1088/1402-4896/ac1028