References
- N. C. Seeman, Nucleic acid junctions and lattices. Journal of Theoretical Biology. 99, 237-247 (1982). https://doi.org/10.1016/0022-5193(82)90002-9
- J. Chen, N. C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 350, 631-633 (1991). https://doi.org/10.1038/350631a0
- E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature. 394, 539-544 (1998). https://doi.org/10.1038/28998
- P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature. 440, 297-302 (2006). https://doi.org/10.1038/nature04586
- S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W. M. Shih, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 459, 414-418 (2009). https://doi.org/10.1038/nature08016
- H. Dietz, S. M. Douglas, W. M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science. 325, 725-730 (2009). https://doi.org/10.1126/science.1174251
- F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology. 10, 779-784 (2015). https://doi.org/10.1038/nnano.2015.162
- G. Tikhomirov, P. Petersen, L. Qian, Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature. 552, 67-71 (2017). https://doi.org/10.1038/nature24655
- K. F. Wagenbauer, C. Sigl, H. Dietz, Gigadalton-scale shape-programmable DNA assemblies. Nature. 552, 78-83 (2017). https://doi.org/10.1038/nature24651
- L, L, Ong, N. Hanikel, O. K, Yaghi, C. Grun, M. T. Strauss, P. Bron, J. Lai-Kee-Him, F. Schueder, B. Wang, P. Wang, J. Y. Kishi, C. Myhrvold, A. Zhu, R. Jungmann, G. Bellot, Y. Ke, P. Yin, Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature. 552, 72-77 (2017). https://doi.org/10.1038/nature24648
- H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. G. Iii, P. W. K. Rothemund, E. Winfree, Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotechnology. 5, 61-66 (2010). https://doi.org/10.1038/nnano.2009.311
- M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, G. Finkelstein, Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett. 11, 3489-3492 (2011). https://doi.org/10.1021/nl202066c
- H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 301, 1882-1884 (2003). https://doi.org/10.1126/science.1089389
- W. Sun, E. Boulais, Y. Hakobyan, W. L. Wang, A. Guan, M. Bathe, P. Yin, Casting inorganic structures with DNA molds. Science. 346, 1258361 (2014). https://doi.org/10.1126/science.1258361
- A. Shaw, V. Lundin, E. Petrova, F. Fordos, E. Benson, A. Al-Amin, A. Herland, A. Blokzijl, B. Hogberg, A. I. Teixeira, Spatial control of membrane receptor function using ligand nanocalipers. Nature Methods. 11, 841-846 (2014). https://doi.org/10.1038/nmeth.3025
- J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science. 323, 112-116 (2009). https://doi.org/10.1126/science.1165831
- Z. Jin, W. Sun, Y. Ke, C.-J. Shih, G. L. C. Paulus, Q. H. Wang, B. Mu, P. Yin, M. S. Strano, Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 4, 1663 (2013). https://doi.org/10.1038/ncomms2690
- S. M. Douglas, I. Bachelet, G. M. Church, A logic-gated nanorobot for targeted transport of molecular payloads. Science. 335, 831-834 (2012). https://doi.org/10.1126/science.1214081
- S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G. J. Anderson, J.-Y. Han, Y. Chang, Y. Liu, C. Zhang, L. Chen, G. Zhou, G. Nie,H. Yan, B. Ding, Y. Zhao, A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology. 36, 258-264 (2018). https://doi.org/10.1038/nbt.4071
- E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb, F. C. Simmel, A self-assembled nanoscale robotic arm controlled by electric fields. Science. 359, 296-301 (2018). https://doi.org/10.1126/science.aao4284
- G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, P. Tinnefeld, Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano. 6, 3189-3195 (2012). https://doi.org/10.1021/nn2050483
- Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, Z.-G. Wang, G. Zou, X. Liang, H. Yan, B. Ding, DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396-13403 (2012). https://doi.org/10.1021/ja304263n
- S. D. Perrault, W. M. Shih, Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability. ACS Nano. 8, 5132-5140 (2014). https://doi.org/10.1021/nn5011914
- E. Benson, A, Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Hogberg, DNA rendering of polyhedral meshes at the nanoscale. Nature. 523, 441-444 (2015). https://doi.org/10.1038/nature14586
- E. Benson, A. Mohammed, A. Bosco, A. I. Teixeira, P. Orponen, B. Hogberg, Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angewandte Chemie International Edition. 55, 8869-8872 (2016). https://doi.org/10.1002/anie.201602446
- R. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, M. Bathe, Designer nanoscale DNA assemblies programmed from the top down. Science. 352, 1534-1534 (2016). https://doi.org/10.1126/science.aaf4388
- H. Jun, F. Zhang, T. Shepherd, S. Ratanalert, X. Qi, H. Yan, M. Bathe, Autonomously designed free-form 2D DNA origami. Science Advances. 5, eaav0655 (2019). https://doi.org/10.1126/sciadv.aav0655
- H. Jun, T. R. Shepherd, K. Zhang, W. P, Bricker, S. Li, W, Chiu, M. Bathe, Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano. 13, 2083-2093 (2019). https://doi.org/10.1021/acsnano.8b08671
- H. Jun, X. Wang, W. P, Bricker, M. Bathe, Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nature Communications. 10, 1-9 (2019). https://doi.org/10.1038/s41467-018-07882-8
- C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, H. Dietz, A primer to scaffolded DNA origami. Nature Methods. 8, 221-229 (2011). https://doi.org/10.1038/nmeth.1570
- D. Wu, N. Sinha, J. Lee, B. P. Sutherland, N. I. Halaszynski, Y. Tian, J. Caplan, H. V. Zhang, J. G. Saven, C. J. Kloxin, D. J. Pochan, Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature. 574, 658-662 (2019). https://doi.org/10.1038/s41586-019-1683-4
- S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006 (2009). https://doi.org/10.1093/nar/gkp436
- H. Jun, X. Wang, W. P. Bricker, S. Jackson, M. Bathe, bioRxiv, in press, doi:10.1101/2020.02.09.940320.
- O. Henrich, Y. A. Gutierrez Fosado, T. Curk, T. E. Ouldridge, Coarse-grained simulation of DNA using LAMMPS: An implementation of the oxDNA model and its applications. Eur. Phys. J. E. 41, 57 (2018). https://doi.org/10.1140/epje/i2018-11669-8
- T. E. Ouldridge, A. A. Louis, J. P. K. Doye, Structural, mechanical, and thermodynamic properties of a coarsegrained DNA model. J. Chem. Phys. 134, 085101 (2011). https://doi.org/10.1063/1.3552946
- A. Suma, E. Poppleton, M. Matthies, P. Sulc, F. Romano, A. A. Louis, J. P. K. Doye, C. Micheletti, L. Rovigatti, TacoxDNA: A user-friendly web server for simulations of complex DNA structures, from single strands to origami. Journal of Computational Chemistry. 40, 2586-2595 (2019). https://doi.org/10.1002/jcc.26029
- K. Pan, D.-N. Kim, F. Zhang, M. R. Adendorff, H. Yan, M. Bathe, Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nature Communications. 5, 5578 (2014). https://doi.org/10.1038/ncomms6578