DOI QR코드

DOI QR Code

Wet Synthesis of Hydroxylammonium Nitrate (HAN) and Solid Phase Extraction Using Dual Organic Solvents

수산화암모늄나이트레이트(HAN)의 습식합성 및 이중 유기용매를 이용한 고체상 추출

  • Kim, Sohee (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kwon, Younja (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jeon, Jong-Ki (Deparment of chemical engineering, Kongju National University) ;
  • Jo, Youngmin (Department of Environmental Science and Engineering, Kyung Hee University)
  • 김소희 (경희대학교 환경응용과학과) ;
  • 권윤자 (경희대학교 환경응용과학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 조영민 (경희대학교 환경응용과학과)
  • Received : 2020.04.26
  • Accepted : 2020.05.21
  • Published : 2020.06.10

Abstract

Hydroxylammonium nitrate (HAN; NH3OHNO3) is an ionic energy material having a low melting temperature and vapor pressure with a high oxygen balance. To utilize it as an oxidizer for a high content liquid mono-propellant, a dual solvent was used to obtain HAN in a solid particulate form. The dehydrated crystal from an aqueous HAN was washed with dual organic solvents including acetone and ethanol, finally resulting in the moisture content of 13.8 wt%. When acetone was applied as a single solvent, the maximum synthesis yield of 88%, the HAN content evaluated by TGA of 86.2%, and the decomposition temperature ranged 160℃ to 205℃ were achieved.

수산화암모늄나이트레이트(HAN; NH3OHNO3)는 낮은 용융점과 증기압의 특성을 가지고 있고, 상대적으로 높은 산소균형을 이루고 있는 이온성 화합물이다. 본 연구에서는 높은 함량의 액상추진제를 제조하기 위한 산화제로 활용하기 위하여 이중용매를 적용하여 고체입자상으로 얻었다. 감압 하에서 액상의 HAN으로부터 수분을 증발시킨 후, 반용매로서 아세톤과 에탄올을 적용하여 추출한 입자상의 HAN에는 13.8 wt%의 수분이 포함되어 있었다. 아세톤을 단독으로 적용하였을 때, 합성수율은 질량기준으로 최대 88%이었고, TGA로 측정된 최대 함량은 86.2%, 분해온도는 160~205℃ 범위로 나타났다.

Keywords

References

  1. A. Rios, A. Irabien, F. Hollmann, and F. Hernandez-Fernandez, Ionic liquids: Green solvents for chemical processing, J. Chem., 2013, 1-2 (2013).
  2. F. Kamal, B. Yann, B. Rachid, and K. Charles, Applications of Ionic Liquids in Science and Technology/Monograph, 1st ed., 447-454, InTech, Rijeka, Croatia (2011).
  3. K. Koh, J. Chin, and T. Chik, Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions, Propuls. Power Res., 2, 194-200 (2013). https://doi.org/10.1016/j.jppr.2013.07.002
  4. W. Kim, S. Huang, Y. Kwon, and Y. Jo, Effects of potassium sulfamate on synthesis of ammonium dinitramide, J. Korean Appl. Sci. Tech., 30, 57-63 (2013).
  5. P. S. Dendage, B. D. Sarwade, S. Asthana, and H. Singh, Hydrazinium nitroformate (HNF) and HNF based propellants: A review, J. Energ. Mater., 19, 41-78 (2001). https://doi.org/10.1080/07370650108219392
  6. R. Amrousse, K. Hori, W. Fetimi, and K. Farhat, HAN and ADN as liquid ionic monopropellants: Thermal and catalytic decomposition processes, Appl. Catal. B:Environ., 127, 121-128 (2012). https://doi.org/10.1016/j.apcatb.2012.08.009
  7. C. Kappenstein, Y. Batonneau, E. A. Perianu, and N. Wingborg, Non toxic ionic liquids as hydrazine substitutes. Comparison of physico-chemical properties and evaluation of ADN and HAN, Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion (ESA SP-557), June 7-8, Chia Laguna (Cagliari), Sardinia, Italy (2004).
  8. L. Courtheoux, D. Amariei, S. Rossignol, and C. Kappenstein, Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants, Appl. Catal. B:Environ., 62, 217-225 (2006). https://doi.org/10.1016/j.apcatb.2005.07.016
  9. H. S. Lee and S. T. Thynell, Confined Rapid Thermolysis/FTIR Spectroscopy of Hydroxylammonium Nitrate, Pennsylvania State University, State College, USA (1997).
  10. S. Hoyani, R. Patel, C. Oommen, and R. Rajeev, Thermal stability of hydroxylammonium nitrate (HAN): Role of preparatory routes, J. Therm. Anal. Calorim., 129, 1083-1093 (2017). https://doi.org/10.1007/s10973-017-6287-3
  11. S. Hoyani and C. Oommen, Process for making solid hydroxylamine nitrate, WO2017033071A1 (2017).
  12. W. Kim, M. Park, S. Kim, J. Jeon, and Y. Jo, Preparation of high purity ammonium dinitramide and its liquid mono-propellant, Appl. Chem. Eng., 30, 591-596 (2019). https://doi.org/10.14478/ace.2019.1060
  13. R. J. Ouellette and J. D. Rawn, Principles of Organic Chemistry, 1st ed., 240-245, Academic Press, Massachusetts, USA (2015).
  14. J. polak and B. C.-Y. LU, Mutual solubilities of hydrocarbons and water at 0 and $25^{\circ}C$, Can. J. Chem., 51, 4018-4023 (1973). https://doi.org/10.1139/v73-599
  15. S. Vosen, Concentration and pressure effects on the decomposition rate of aqueous hydroxylammonium nitrate solutions, Combust. Sci. Technol., 68, 85-99 (1989). https://doi.org/10.1080/00102208908924070
  16. A. A. Esparza, R. E. Ferguson, A. Choudhuri, N. D. Love, and E. Shafirvoich, Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution, Combust. Flame, 193, 417-423 (2018). https://doi.org/10.1016/j.combustflame.2018.04.007