DOI QR코드

DOI QR Code

Deletion Timing of Cic Alleles during Hematopoiesis Determines the Degree of Peripheral CD4+ T Cell Activation and Proliferation

  • Guk-Yeol Park (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Gil-Woo Lee (Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH)) ;
  • Soeun Kim (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Hyebeen Hong (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Jong Seok Park (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Jae-Ho Cho (Medical Research Center for Combinatorial Tumor Immunotherapy, Immunotherapy Innovation Center, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital) ;
  • Yoontae Lee (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
  • Received : 2020.07.31
  • Accepted : 2020.10.08
  • Published : 2020.10.31

Abstract

Capicua (CIC) is a transcriptional repressor that regulates several developmental processes. CIC deficiency results in lymphoproliferative autoimmunity accompanied by expansion of CD44hiCD62Llo effector/memory and follicular Th cell populations. Deletion of Cic alleles in hematopoietic stem cells (Vav1-Cre-mediated knockout of Cic) causes more severe autoimmunity than that caused by the knockout of Cic in CD4+CD8+ double positive thymocytes (Cd4-Cre-mediated knockout of Cic). In this study, we compared splenic CD4+ T cell activation and proliferation between whole immune cell-specific Cic-null (Cicf/f;Vav1-Cre) and T cell-specific Cic-null (Cicf/f;Cd4-Cre) mice. Hyperactivation and hyperproliferation of CD4+ T cells were more apparent in Cicf/f;Vav1-Cre mice than in Cicf/f;Cd4-Cre mice. Cicf/f;Vav1-Cre CD4+ T cells more rapidly proliferated and secreted larger amounts of IL-2 upon TCR stimulation than did Cicf/f;Cd4-Cre CD4+ T cells, while the TCR stimulation-induced activation of the TCR signaling cascade and calcium flux were comparable between them. Mixed wild-type and Cicf/f;Vav1-Cre bone marrow chimeras also exhibited more apparent hyperactivation and hyperproliferation of Cic-deficient CD4+ T cells than did mixed wild-type and Cicf/f;Cd4-Cre bone marrow chimeras. Taken together, our data demonstrate that CIC deficiency at the beginning of T cell development endows peripheral CD4+ T cells with enhanced T cell activation and proliferative capability.

Keywords

Acknowledgement

We thank the Lee lab members for helpful discussions and comments on this study. This work was supported by grants from the Samsung Science and Technology Foundation under project number SSTF-BA1502-14 and the National Research Foundation (NRF) of Korea (2017R1A5A1015366 and 2018R1A2B2004416 for YL; 2018R1A5A2024181 and 2020M3A9G3080281 for JHC). GYP, HH, SK, and JSP were supported by the BK21 Program.

References

  1. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 2011;11:805-812. https://doi.org/10.1038/nrc3153
  2. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: immunology of osteoporosis-role of t cells. Front Immunol 2018;9:657.
  3. Devarajan P, Chen Z. Autoimmune effector memory T cells: the bad and the good. Immunol Res 2013;57:12-22. https://doi.org/10.1007/s12026-013-8448-1
  4. Kim CJ, Lee CG, Jung JY, Ghosh A, Hasan SN, Hwang SM, Kang H, Lee C, Kim GC, Rudra D, et al. The transcription factor Ets1 suppresses T follicular helper type 2 cell differentiation to halt the onset of systemic lupus erythematosus. Immunity 2019;50:272.
  5. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005;435:452-458. https://doi.org/10.1038/nature03555
  6. Park S, Lee S, Lee CG, Park GY, Hong H, Lee JS, Kim YM, Lee SB, Hwang D, Choi YS, et al. Capicua deficiency induces autoimmunity and promotes follicular helper T cell differentiation via derepression of ETV5. Nat Commun 2017;8:16037.
  7. Krishnan S, Juang YT, Chowdhury B, Magilavy A, Fisher CU, Nguyen H, Nambiar MP, Kyttaris V, Weinstein A, Bahjat R, et al. Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells. J Immunol 2008;181:8145-8152. https://doi.org/10.4049/jimmunol.181.11.8145
  8. Chan AY, Punwani D, Kadlecek TA, Cowan MJ, Olson JL, Mathes EF, Sunderam U, Fu SM, Srinivasan R, Kuriyan J, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med 2016;213:155-165. https://doi.org/10.1084/jem.20150888
  9. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M, et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001;14:523-534. https://doi.org/10.1016/S1074-7613(01)00134-0
  10. Chang M, Jin W, Chang JH, Xiao Y, Brittain GC, Yu J, Zhou X, Wang YH, Cheng X, Li P, et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat Immunol 2011;12:1002-1009. https://doi.org/10.1038/ni.2090
  11. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 2011;29:621-663. https://doi.org/10.1146/annurev-immunol-031210-101400
  12. Nurieva RI, Chung Y. Understanding the development and function of T follicular helper cells. Cell Mol Immunol 2010;7:190-197.
  13. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol 2012;8:337-347. https://doi.org/10.1038/nrrheum.2012.58
  14. Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 2019;50:1132-1148. https://doi.org/10.1016/j.immuni.2019.04.011
  15. Ryu H, Kim J, Kim D, Lee JE, Chung Y. Cellular and molecular links between autoimmunity and lipid metabolism. Mol Cells 2019;42:747-754.
  16. Yang J, Yang X, Yang J, Li M. Baicalin ameliorates lupus autoimmunity by inhibiting differentiation of Tfh cells and inducing expansion of Tfr cells. Cell Death Dis 2019;10:140.
  17. Lee SK, Silva DG, Martin JL, Pratama A, Hu X, Chang PP, Walters G, Vinuesa CG. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 2012;37:880-892. https://doi.org/10.1016/j.immuni.2012.10.010
  18. Lee Y. Regulation and function of Capicua in mammals. Exp Mol Med 2020;52:531-537. https://doi.org/10.1038/s12276-020-0411-3
  19. Kim E, Park S, Choi N, Lee J, Yoe J, Kim S, Jung HY, Kim KT, Kang H, Fryer JD, et al. Deficiency of Capicua disrupts bile acid homeostasis. Sci Rep 2015;5:8272.
  20. Lee Y, Fryer JD, Kang H, Crespo-Barreto J, Bowman AB, Gao Y, Kahle JJ, Hong JS, Kheradmand F, Orr HT, et al. ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell 2011;21:746-757.
  21. Lu HC, Tan Q, Rousseaux MW, Wang W, Kim JY, Richman R, Wan YW, Yeh SY, Patel JM, Liu X, et al. Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat Genet 2017;49:527-536. https://doi.org/10.1038/ng.3808
  22. Simon-Carrasco L, Grana O, Salmon M, Jacob HK, Gutierrez A, Jimenez G, Drosten M, Barbacid M. Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes Dev 2017;31:1456-1468. https://doi.org/10.1101/gad.300244.117
  23. Bunda S, Heir P, Metcalf J, Li AS, Agnihotri S, Pusch S, Yasin M, Li M, Burrell K, Mansouri S, et al. CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 2019;10:661.
  24. Kim E, Kim D, Lee JS, Yoe J, Park J, Kim CJ, Jeong D, Kim S, Lee Y. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology 2018;67:2287-2301. https://doi.org/10.1002/hep.29738
  25. Lee JS, Kim E, Lee J, Kim D, Kim H, Kim CJ, Kim S, Jeong D, Lee Y. Capicua suppresses colorectal cancer progression via repression of ETV4 expression. Cancer Cell Int 2020;20:42.
  26. Okimoto RA, Breitenbuecher F, Olivas VR, Wu W, Gini B, Hofree M, Asthana S, Hrustanovic G, Flanagan J, Tulpule A, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet 2017;49:87-96. https://doi.org/10.1038/ng.3728
  27. Yoe J, Kim D, Kim S, Lee Y. Capicua restricts cancer stem cell-like properties in breast cancer cells. Oncogene 2020;39:3489-3506. https://doi.org/10.1038/s41388-020-1230-7
  28. Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, Rodriguez FJ, Cahill DP, McLendon R, Riggins G, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 2011;333:1453-1455. https://doi.org/10.1126/science.1210557
  29. Gleize V, Alentorn A, Connen de Kerillis L, Labussiere M, Nadaradjane AA, Mundwiller E, Ottolenghi C, Mangesius S, Rahimian A, Ducray F, et al. CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol 2015;78:355-374. https://doi.org/10.1002/ana.24443
  30. Tan Q, Brunetti L, Rousseaux MW, Lu HC, Wan YW, Revelli JP, Liu Z, Goodell MA, Zoghbi HY. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci U S A 2018;115:E1511-E1519.
  31. Park S, Park J, Kim E, Lee Y. The Capicua/ETS translocation variant 5 axis regulates liver-resident memory CD8+ T-cell development and the pathogenesis of liver injury. Hepatology 2019;70:358-371. https://doi.org/10.1002/hep.30594
  32. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 2001;15:763-774. https://doi.org/10.1016/S1074-7613(01)00227-8
  33. de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 2003;33:314-325.