DOI QR코드

DOI QR Code

Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells

  • Hui-Won Park (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Sun-Hee Park (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Hyeon-Ju Jo (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Tae-Gyu Kim (Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University) ;
  • Jeong Hyun Lee (Department of Systems Immunology, School of Biomedical Science, Kangwon National University) ;
  • Seung-Goo Kang (Department of Systems Immunology, School of Biomedical Science, Kangwon National University) ;
  • Young-Saeng Jang (Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Pyeung-Hyeun Kim (Institute of Bioscience and Biotechnology, Kangwon National University)
  • 투고 : 2020.06.16
  • 심사 : 2020.07.13
  • 발행 : 2020.10.31

초록

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant (NRF-2016R1D1A3B03936377 and NRF-2019R1I1A1A01043808 to YS Jang, NRF-2019R1I1A3A01048952 to PH Kim) and a 2016 Research Grant from Kangwon National University to PH Kim.

참고문헌

  1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252. https://doi.org/10.1038/32588
  2. Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev 2003;196:125-146. https://doi.org/10.1046/j.1600-065X.2003.00079.x
  3. Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 2013;4:82.
  4. Svajger U, Rozman P. Tolerogenic dendritic cells: molecular and cellular mechanisms in transplantation. J Leukoc Biol 2014;95:53-69. https://doi.org/10.1189/jlb.0613336
  5. Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007;178:7018-7031. https://doi.org/10.4049/jimmunol.178.11.7018
  6. Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 1999;163:3771-3777. https://doi.org/10.4049/jimmunol.163.7.3771
  7. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000;164:3596-3599. https://doi.org/10.4049/jimmunol.164.7.3596
  8. Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 2007;109:1568-1573. https://doi.org/10.1182/blood-2006-06-031856
  9. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002;297:1867-1870. https://doi.org/10.1126/science.1073514
  10. Mizumoto N, Kumamoto T, Robson SC, Sevigny J, Matsue H, Enjyoji K, Takashima A. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med 2002;8:358-365. https://doi.org/10.1038/nm0402-358
  11. Unger WW, Laban S, Kleijwegt FS, van der Slik AR, Roep BO. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur J Immunol 2009;39:3147-3159. https://doi.org/10.1002/eji.200839103
  12. Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 2005;62:2549-2559. https://doi.org/10.1007/s00018-005-5370-2
  13. Moreno-Exposito L, Illescas-Montes R, Melguizo-Rodriguez L, Ruiz C, Ramos-Torrecillas J, de Luna-Bertos E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci 2018;195:61-64. https://doi.org/10.1016/j.lfs.2018.01.002
  14. Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunol 2002;220:83-95. https://doi.org/10.1016/S0008-8749(03)00006-6
  15. Togawa J, Nagase H, Tanaka K, Inamori M, Nakajima A, Ueno N, Saito T, Sekihara H. Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J Gastroenterol Hepatol 2002;17:1291-1298. https://doi.org/10.1046/j.1440-1746.2002.02868.x
  16. Zimecki M, Kocieba M, Chodaczek G, Houszka M, Kruzel ML. Lactoferrin ameliorates symptoms of experimental encephalomyelitis in Lewis rats. J Neuroimmunol 2007;182:160-166. https://doi.org/10.1016/j.jneuroim.2006.10.008
  17. Yin H, Cheng L, Agarwal C, Agarwal R, Ju C. Lactoferrin protects against concanavalin A-induced liver injury in mice. Liver Int 2010;30:623-632. https://doi.org/10.1111/j.1478-3231.2009.02199.x
  18. Kim PH, Jang YS, Song H-E, Seo GY, Kang SG, Lee JH, Kwon BE, Ko HJ. Mechanism underlying the induction of Foxp3+  regulatory T cells by lactoferrin. J Immunol 2018;200:47.16.
  19. Bhatt S, Qin J, Bennett C, Qian S, Fung JJ, Hamilton TA, Lu L. All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function. J Immunol 2014;192:5098-5108. https://doi.org/10.4049/jimmunol.1303073
  20. Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+ Foxp3+  regulatory T cell induction and expansion. J Immunol 2009;183:4895-4903. https://doi.org/10.4049/jimmunol.0901459
  21. Semple K, Nguyen A, Yu Y, Wang H, Anasetti C, Yu XZ. Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. Blood 2011;117:3096-3103. https://doi.org/10.1182/blood-2010-08-301275
  22. Xia CQ, Peng R, Beato F, Clare-Salzler MJ. Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity. Scand J Immunol 2005;62:45-54. https://doi.org/10.1111/j.1365-3083.2005.01640.x
  23. Kim N, Park CS, Im SA, Kim JW, Lee JH, Park YJ, Song S, Lee CK. Minocycline promotes the generation of dendritic cells with regulatory properties. Oncotarget 2016;7:52818-52831. https://doi.org/10.18632/oncotarget.10810
  24. Lee JH, Park CS, Jang S, Kim JW, Kim SH, Song S, Kim K, Lee CK. Tolerogenic dendritic cells are efficiently generated using minocycline and dexamethasone. Sci Rep 2017;7:15087.
  25. Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL. CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 2003;171:166-174. https://doi.org/10.4049/jimmunol.171.1.166
  26. Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev 2006;212:86-98. https://doi.org/10.1111/j.0105-2896.2006.00426.x
  27. Chang J, Thangamani S, Kim MH, Ulrich B, Morris SM Jr, Kim CH. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation. Eur J Immunol 2013;43:967-978. https://doi.org/10.1002/eji.201242772
  28. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, Young JW. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 2009;114:555-563. https://doi.org/10.1182/blood-2008-11-191197
  29. Creery WD, Diaz-Mitoma F, Filion L, Kumar A. Differential modulation of B7-1 and B7-2 isoform expression on human monocytes by cytokines which influence the development of T helper cell phenotype. Eur J Immunol 1996;26:1273-1277. https://doi.org/10.1002/eji.1830260614
  30. Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun 1998;66:486-491. https://doi.org/10.1128/IAI.66.2.486-491.1998
  31. Tze LE, Horikawa K, Domaschenz H, Howard DR, Roots CM, Rigby RJ, Way DA, Ohmura-Hoshino M, Ishido S, Andoniou CE, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med 2011;208:149-165. https://doi.org/10.1084/jem.20092203
  32. Davidson LA, Lonnerdal B. Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 1987;76:733-740. https://doi.org/10.1111/j.1651-2227.1987.tb10557.x
  33. Kim PH, Kagnoff MF. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol 1990;145:3773-3778. https://doi.org/10.4049/jimmunol.145.11.3773
  34. Jang YS, Seo GY, Lee JM, Seo HY, Han HJ, Kim SJ, Jin BR, Kim HJ, Park SR, Rhee KJ, et al. Lactoferrin causes IgA and IgG2b isotype switching through betaglycan binding and activation of canonical TGF-β signaling. Mucosal Immunol 2015;8:906-917. https://doi.org/10.1038/mi.2014.121
  35. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 2009;106:19256-19261.  https://doi.org/10.1073/pnas.0812681106
  36. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S. Preferential generation of follicular B helper T cells from Foxp3+  T cells in gut Peyer's patches. Science 2009;323:1488-1492. https://doi.org/10.1126/science.1169152
  37. Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130:643-658. https://doi.org/10.1084/jem.130.3.643
  38. MacManus CF, Collins CB, Nguyen TT, Alfano RW, Jedlicka P, de Zoeten EF. VEN-120, a recombinant human lactoferrin, promotes a regulatory T cell [Treg] phenotype and drives resolution of inflammation in distinct murine models of inflammatory bowel disease. J Crohns Colitis 2017;11:1101-1112.  https://doi.org/10.1093/ecco-jcc/jjx056