DOI QR코드

DOI QR Code

The Emerging Role of Eosinophils as Multifunctional Leukocytes in Health and Disease

  • Hyung Jin Kim (Department of Microbiology, College of Medicine, Gachon University) ;
  • YunJae Jung (Department of Microbiology, College of Medicine, Gachon University)
  • Received : 2020.04.22
  • Accepted : 2020.06.16
  • Published : 2020.06.30

Abstract

Eosinophils are terminally differentiated cytotoxic effector cells that have a role in parasitic infections and allergy by releasing their granule-derived cytotoxic proteins. However, an increasing number of recent observations indicate that eosinophils are not only associated with the pathogenesis of a wide range of diseases, but also contribute to the maintenance of homeostatic responses in previously underappreciated diverse tissues, such as the gastrointestinal (GI) tract and adipose tissue. In this review, we describe biological characteristics of eosinophils, as their developmental properties, permissive proliferation and survival, degranulation activity, and migration properties enable them to distribute to both homeostatic and inflamed tissues. We describe pathologic aspects of eosinophils with a role in asthma and in various GI diseases, including eosinophilic GI disorders, inflammatory bowel disease, and radiation-induced enteropathy. Finally, we discuss the beneficial role of eosinophils, which contribute to the resolution of pathogenic conditions and to the modulation of homeostatic biologic responses.

Keywords

Acknowledgement

This work was supported by funding from the National Research Foundation of Korea(2020R1A2C1003351), funded by the Ministry of Science and ICT of the Korean government.

References

  1. Jung Y, Rothenberg ME. Roles and regulation of gastrointestinal eosinophils in immunity and disease. J Immunol 2014;193:999-1005. https://doi.org/10.4049/jimmunol.1400413
  2. Jung Y. Comparative analysis of dibutyric cAMP and butyric acid on the differentiation of human eosinophilic leukemia EoL-1 cells. Immune Netw 2015;15:313-318. https://doi.org/10.4110/in.2015.15.6.313
  3. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol 2006;24:147-174. https://doi.org/10.1146/annurev.immunol.24.021605.090720
  4. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 2013;13:9-22. https://doi.org/10.1038/nri3341
  5. Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol 2017;17:746-760. https://doi.org/10.1038/nri.2017.95
  6. Wen T, Rothenberg ME. The regulatory function of eosinophils. Microbiol Spectr 2016;4.
  7. Rothenberg ME. Eosinophilic gastrointestinal disorders (EGID). J Allergy Clin Immunol 2004;113:11-28. https://doi.org/10.1016/j.jaci.2003.10.047
  8. Long H, Liao W, Wang L, Lu Q. A player and coordinator: the versatile roles of eosinophils in the immune system. Transfus Med Hemother 2016;43:96-108. https://doi.org/10.1159/000445215
  9. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 2002;195:1387-1395. https://doi.org/10.1084/jem.20020656
  10. Hara T, Miyajima A. Function and signal transduction mediated by the interleukin 3 receptor system in hematopoiesis. Stem Cells 1996;14:605-618. https://doi.org/10.1002/stem.140605
  11. Mould AW, Matthaei KI, Young IG, Foster PS. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 1997;99:1064-1071. https://doi.org/10.1172/JCI119234
  12. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 2016;17:765-774. https://doi.org/10.1038/ni.3489
  13. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 2013;502:245-248. https://doi.org/10.1038/nature12526
  14. Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, Chawla A, Locksley RM. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 2013;210:535-549. https://doi.org/10.1084/jem.20121964
  15. Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP, Kim JH, Park A, Yun CH, Hong SW, Kim YM, et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J Exp Med 2016;213:555-567. https://doi.org/10.1084/jem.20141388
  16. Egea L, Hirata Y, Kagnoff MF. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev Gastroenterol Hepatol 2010;4:723-731. https://doi.org/10.1586/egh.10.73
  17. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 2012;188:703-713. https://doi.org/10.4049/jimmunol.1101270
  18. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 2008;121:1484-1490. https://doi.org/10.1016/j.jaci.2008.04.005
  19. Wong CK, Hu S, Cheung PF, Lam CW. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol 2010;43:305-315. https://doi.org/10.1165/rcmb.2009-0168OC
  20. Munitz A, Levi-Schaffer F. Inhibitory receptors on eosinophils: a direct hit to a possible Achilles heel? J Allergy Clin Immunol 2007;119:1382-1387. https://doi.org/10.1016/j.jaci.2007.01.031
  21. Munitz A, Bachelet I, Eliashar R, Moretta A, Moretta L, Levi-Schaffer F. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 2006;107:1996-2003. https://doi.org/10.1182/blood-2005-07-2926
  22. Ben Baruch-Morgenstern N, Shik D, Moshkovits I, Itan M, Karo-Atar D, Bouffi C, Fulkerson P, Rashkovan D, Jung S, Rothenberg ME, et al. Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat Immunol 2014;15:36-44. https://doi.org/10.1038/ni.2757
  23. Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 1996;183:2349-2354.  https://doi.org/10.1084/jem.183.5.2349
  24. Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 1996;183:2437-2448. https://doi.org/10.1084/jem.183.6.2437
  25. Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol 2008;83:1-12. https://doi.org/10.1189/jlb.0607344
  26. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 1999;103:1719-1727. https://doi.org/10.1172/JCI6560
  27. Brandt EB, Zimmermann N, Muntel EE, Yamada Y, Pope SM, Mishra A, Hogan SP, Rothenberg ME. The alpha4bbeta7-integrin is dynamically expressed on murine eosinophils and involved in eosinophil trafficking to the intestine. Clin Exp Allergy 2006;36:543-553. https://doi.org/10.1111/j.1365-2222.2006.02456.x
  28. Shah K, Ignacio A, McCoy KD, Harris NL. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. Forthcoming 2020.
  29. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 2011;332:243-247. https://doi.org/10.1126/science.1201475
  30. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 2016;126:3279-3295. https://doi.org/10.1172/JCI85664
  31. Throsby M, Herbelin A, Pleau JM, Dardenne M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol 2000;165:1965-1975. https://doi.org/10.4049/jimmunol.165.4.1965
  32. Carlens J, Wahl B, Ballmaier M, Bulfone-Paus S, Forster R, Pabst O. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. J Immunol 2009;183:5600-5607. https://doi.org/10.4049/jimmunol.0801581
  33. Spencer LA, Bonjour K, Melo RC, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol 2014;5:496.
  34. Scepek S, Moqbel R, Lindau M. Compound exocytosis and cumulative degranulation by eosinophils and their role in parasite killing. Parasitol Today 1994;10:276-278. https://doi.org/10.1016/0169-4758(94)90146-5
  35. Ueki S, Melo RC, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 2013;121:2074-2083. https://doi.org/10.1182/blood-2012-05-432088
  36. Ueki S, Tokunaga T, Fujieda S, Honda K, Hirokawa M, Spencer LA, Weller PF. Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation. Curr Allergy Asthma Rep 2016;16:54.
  37. Neves JS, Perez SA, Spencer LA, Melo RC, Reynolds L, Ghiran I, Mahmudi-Azer S, Odemuyiwa SO, Dvorak AM, Moqbel R, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci U S A 2008;105:18478-18483. https://doi.org/10.1073/pnas.0804547105
  38. Murdoch JR, Lloyd CM. Chronic inflammation and asthma. Mutat Res 2010;690:24-39. https://doi.org/10.1016/j.mrfmmm.2009.09.005
  39. Wills-Karp M, Karp CL. Biomedicine. Eosinophils in asthma: remodeling a tangled tale. Science 2004;305:1726-1729. https://doi.org/10.1126/science.1104134
  40. Kanda A, Yasutaka Y, Van Bui D, Suzuki K, Sawada S, Kobayashi Y, Asako M, Iwai H. Multiple biological aspects of eosinophils in host defense, eosinophil-associated diseases, immunoregulation, and homeostasis: Is their role beneficial, detrimental, regulator, or bystander? Biol Pharm Bull 2020;43:20-30. https://doi.org/10.1248/bpb.b19-00892
  41. Muniz VS, Silva JC, Braga YAV, Melo RCN, Ueki S, Takeda M, Hebisawa A, Asano K, Figueiredo RT, Neves JS. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol 2018;141:571-585.e7.  https://doi.org/10.1016/j.jaci.2017.07.048
  42. Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol 2018;104:61-67. https://doi.org/10.1002/JLB.3MR1117-426R
  43. Fryer AD, Stein LH, Nie Z, Curtis DE, Evans CM, Hodgson ST, Jose PJ, Belmonte KE, Fitch E, Jacoby DB. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 2006;116:228-236. https://doi.org/10.1172/JCI25423
  44. Jacoby DB, Gleich GJ, Fryer AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 1993;91:1314-1318. https://doi.org/10.1172/JCI116331
  45. Gu Q, Lim ME, Gleich GJ, Lee LY. Mechanisms of eosinophil major basic protein-induced hyperexcitability of vagal pulmonary chemosensitive neurons. Am J Physiol Lung Cell Mol Physiol 2009;296:L453-L461. https://doi.org/10.1152/ajplung.90467.2008
  46. Noel RJ, Putnam PE, Rothenberg ME. Eosinophilic esophagitis. N Engl J Med 2004;351:940-941. https://doi.org/10.1056/NEJM200408263510924
  47. Blanchard C, Wang N, Stringer KF, Mishra A, Fulkerson PC, Abonia JP, Jameson SC, Kirby C, Konikoff MR, Collins MH, et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J Clin Invest 2006;116:536-547. https://doi.org/10.1172/JCI26679
  48. Wen T, Stucke EM, Grotjan TM, Kemme KA, Abonia JP, Putnam PE, Franciosi JP, Garza JM, Kaul A, King EC, et al. Molecular diagnosis of eosinophilic esophagitis by gene expression profiling. Gastroenterology 2013;145:1289-1299. https://doi.org/10.1053/j.gastro.2013.08.046
  49. Collins MH, Capocelli K, Yang GY. Eosinophilic gastrointestinal disorders pathology. Front Med (Lausanne) 2018;4:261.
  50. Click B, Anderson AM, Koutroubakis IE, Rivers CR, Babichenko D, Machicado JD, Hartman DJ, Hashash JG, Dunn MA, Schwartz M, et al. Peripheral eosinophilia in patients with inflammatory bowel disease defines an aggressive disease phenotype. Am J Gastroenterol 2017;112:1849-1858. https://doi.org/10.1038/ajg.2017.402
  51. Smyth CM, Akasheh N, Woods S, Kay E, Morgan RK, Thornton MA, O'Grady A, Cummins R, Sheils O, Smyth P, et al. Activated eosinophils in association with enteric nerves in inflammatory bowel disease. PLoS One 2013;8:e64216.
  52. Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in inflammatory bowel disease. Inflamm Bowel Dis 2019;25:1140-1151. https://doi.org/10.1093/ibd/izz024
  53. Levy AM, Gleich GJ, Sandborn WJ, Tremaine WJ, Steiner BL, Phillips SF. Increased eosinophil granule proteins in gut lavage fluid from patients with inflammatory bowel disease. Mayo Clin Proc 1997;72:117-123. https://doi.org/10.4065/72.2.117
  54. Masterson JC, McNamee EN, Fillon SA, Hosford L, Harris R, Fernando SD, Jedlicka P, Iwamoto R, Jacobsen E, Protheroe C, et al. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 2015;64:1236-1247. https://doi.org/10.1136/gutjnl-2014-306998
  55. Hauer-Jensen M, Denham JW, Andreyev HJ. Radiation enteropathy--pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol 2014;11:470-479. https://doi.org/10.1038/nrgastro.2014.46
  56. Stacey R, Green JT. Radiation-induced small bowel disease: latest developments and clinical guidance. Ther Adv Chronic Dis 2014;5:15-29. https://doi.org/10.1177/2040622313510730
  57. Takemura N, Kurashima Y, Mori Y, Okada K, Ogino T, Osawa H, Matsuno H, Aayam L, Kaneto S, Park EJ, et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci Transl Med 2018;10:eaan0333.
  58. Kvarnhammar AM, Cardell LO. Pattern-recognition receptors in human eosinophils. Immunology 2012;136:11-20. https://doi.org/10.1111/j.1365-2567.2012.03556.x
  59. Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, Foster PS, Matthaei KI. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 2007;110:1578-1586.  https://doi.org/10.1182/blood-2007-01-071340
  60. Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 2001;70:691-698.  https://doi.org/10.1189/jlb.70.5.691
  61. Soukup JM, Becker S. Role of monocytes and eosinophils in human respiratory syncytial virus infection in vitro. Clin Immunol 2003;107:178-185. https://doi.org/10.1016/S1521-6616(03)00038-X
  62. Mathur SK, Fichtinger PS, Kelly JT, Lee WM, Gern JE, Jarjour NN. Interaction between allergy and innate immunity: model for eosinophil regulation of epithelial cell interferon expression. Ann Allergy Asthma Immunol 2013;111:25-31. https://doi.org/10.1016/j.anai.2013.05.010
  63. Torrent M, Navarro S, Moussaoui M, Nogues MV, Boix E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 2008;47:3544-3555. https://doi.org/10.1021/bi702065b
  64. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008;14:949-953. https://doi.org/10.1038/nm.1855
  65. Williams TJ. The eosinophil enigma. J Clin Invest 2004;113:507-509. https://doi.org/10.1172/JCI21073
  66. Goh YP, Henderson NC, Heredia JE, Red Eagle A, Odegaard JI, Lehwald N, Nguyen KD, Sheppard D, Mukundan L, Locksley RM, et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci U S A 2013;110:9914-9919. https://doi.org/10.1073/pnas.1304046110
  67. Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013;153:376-388. https://doi.org/10.1016/j.cell.2013.02.053
  68. Leitch VD, Strudwick XL, Matthaei KI, Dent LA, Cowin AJ. IL-5-overexpressing mice exhibit eosinophilia and altered wound healing through mechanisms involving prolonged inflammation. Immunol Cell Biol 2009;87:131-140. https://doi.org/10.1038/icb.2008.72
  69. Sakkal S, Miller S, Apostolopoulos V, Nurgali K. Eosinophils in cancer: favourable or unfavourable? Curr Med Chem 2016;23:650-666. https://doi.org/10.2174/0929867323666160119094313
  70. Reichman H, Karo-Atar D, Munitz A. Emerging roles for eosinophils in the tumor microenvironment. Trends Cancer 2016;2:664-675. https://doi.org/10.1016/j.trecan.2016.10.002
  71. Reichman H, Itan M, Rozenberg P, Yarmolovski T, Brazowski E, Varol C, Gluck N, Shapira S, Arber N, Qimron U, et al. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res 2019;7:388-400. https://doi.org/10.1158/2326-6066.CIR-18-0494
  72. Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V, Phung W, Lu B, Duffy D, Paradis V, Mallet V, et al. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat Immunol 2019;20:257-264. https://doi.org/10.1038/s41590-019-0321-5
  73. von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann ML, Diehl V, Georgii A. Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin's disease, allowing for known prognostic factors. Blood 2000;95:1207-1213. https://doi.org/10.1182/blood.V95.4.1207.004k34_1207_1213
  74. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012;33:119-126. https://doi.org/10.1016/j.it.2011.12.001
  75. Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The maintenance of memory plasma cells. Front Immunol 2019;10:721.
  76. Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Lohning M, Berek C. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 2011;12:151-159. https://doi.org/10.1038/ni.1981
  77. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol 2008;8:421-434. https://doi.org/10.1038/nri2322
  78. Chu VT, Beller A, Rausch S, Strandmark J, Zanker M, Arbach O, Kruglov A, Berek C. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 2014;40:582-593. https://doi.org/10.1016/j.immuni.2014.02.014
  79. Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH, Chaplin DD, Lee EH, Jang MH, Woo SY, Seoh JY, et al. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 2015;8:930-942. https://doi.org/10.1038/mi.2014.123
  80. Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol 2016;6:637.
  81. Yoon J, Um HN, Jang J, Bae YA, Park WJ, Kim HJ, Yoon MS, Chung IY, Jung Y. Eosinophil activation by Toll-like receptor 4 ligands regulates macrophage polarization. Front Cell Dev Biol 2019;7:329.
  82. Lee EH, Itan M, Jang J, Gu HJ, Rozenberg P, Mingler MK, Wen T, Yoon J, Park SY, Roh JY, et al. Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci Rep 2018;8:9894.
  83. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014;157:1292-1308. https://doi.org/10.1016/j.cell.2014.03.066