DOI QR코드

DOI QR Code

멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads

  • Kim, Ji-Seok (Department of Aerospace System Engineering, University of Science & Technology) ;
  • Kim, Hui-Kyung (Department of Aerospace System Engineering, University of Science & Technology) ;
  • Kim, Min-Ki (Korea Aerospace Research Institute) ;
  • Kim, Hae-Dong (Department of Aerospace System Engineering, University of Science & Technology)
  • 투고 : 2020.03.09
  • 심사 : 2020.04.29
  • 발행 : 2020.06.01

초록

본 연구에서는 다수의 우주 환경 관측용 탑재체를 장착한 6U급 초소형위성에 대한 열모델을 구축하여 이를 기반으로 수행된 열설계에 대해 기술하였으며, 궤도 열해석을 통해 적용된 열설계의 유효성을 입증하였다. 초소형위성의 특성을 고려하여 표면 처리 및 절연체, 열전도체 등의 수동 열제어 기법 위주로 열설계를 진행하였지만, 배터리 및 추력기 등과 같이 작동 온도의 범위가 좁고 궤도 열환경에 직접적으로 노출되는 부품들에 대해서는 능동 열제어 기법 중 하나인 히터를 적용하였다. 궤도 열해석 조건은 기본적으로 위성의 궤도 조건을 바탕으로 하며, 임무 시나리오에 따른 발열량 및 위성의 자세에 따라 임무 모드, 초기 운용 모드, 비상운용 모드, 편대 비행 모드로 분류하여 궤도 열해석을 수행하였다. 각 모드 별 해석 결과를 통해 모든 부품들이 작동 온도 조건을 만족하는 것을 확인하였고, 비상운용 모드의 해석 결과를 통해 배터리 및 추력기의 히터 용량과 작동 주기를 산출하였다.

In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.

키워드

참고문헌

  1. Heidt, H., Puig-Suari, A. S., Moore, S. N. and Twiggs, R. J., "CubeSat: a new Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation," Proceeding of the 14th Annual AIAA/USU Conference on Small Satellites, Vol. 32, August 2000.
  2. Thyrso, V., Cesar A, C., Alessandra M, B., Fernando T, B. and Rodrigo, L., "Towards the Thousandth CubeSat: A Statistical Overview," International Journal of Aerospace Engineering, 2019.
  3. Cho, D. H., Choi, W. S., Kim, M. K., Kim, J. H., Sim, E. and Kim H. D., "High-Resolution Image and Video CubeSat (HiREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform," International Journal of Aerospace Engineering, 2019.
  4. Kim, H. D., Choi, W. S., Cho, D. H., Kim, M. K., Kim, J. H., Sim, E. S., Lim, S. M., Kim, J. S. and Jeong, M. R., "Introduction to Development of a Rendezvous/Docking Demonstration Satellite," Proceeding of the Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 417-418.
  5. Kang, S. J., Ha, H. W., Han, S. H., Seo, J. K. and Oh, H. W., "Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 2, 2016, pp. 156-164. https://doi.org/10.5139/JKSAS.2016.44.2.156
  6. Yoo, J. G., "Thermal Analysis, Design and Test for CubeSat: TRIO-CINEMA Mission," Masters dissertation, Kyung Hee University, Seoul, South Korea, 2012.
  7. Shin, H. S., Kim, M. K., Kim, H. K. and Kim, H. D., "On-Orbit Thermal Analysis and Design of 6U HiREV Nano-Satellite," The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2018, pp. 331-332.
  8. Gilmore, D., Spacecraft Thermal Control Handbook, 2th Ed., The Aerospace Press, USA, 2002
  9. Kang, S. J., "Design and Analysis of Formation Flying Scenario of SNIPE Mission," Masters dissertation, Yonsei University, Seoul, South Korea, 2018.
  10. Chang, Y. K., Park, M. Y., Park, J. H. and Choi, Y. J. "A Study on Thermal Modeling and Heat Load Mitigation for Satellite Electronic Components," Proceeding of the 15th Annual AIAA/USU Conference on Small Satellites, 2001.
  11. Karam, R., Satellite Thermal Control for System Engineers, AIAA, USA, 1998.
  12. Kim, M. J., Huh, H. I., Kim, S. H., Chang, S. Y., Lee, D. G., Lee, S. H. and Choi, H. J., "Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 11, 2011, pp. 1069-1076. https://doi.org/10.5139/JKSAS.2s011.39.11.1069
  13. Timothy, D. P., Steven, G. R., Mark, J. W., David, J., Brent A. C. and Douglas, P. B., Thermal Desktop User's Manual, 6th Ver., USA, 2017.
  14. Cullimore, B. A., Ring, S. G. and Johnson, D. A., SINDA/FLUINT User's Manual, 6th Ver., USA, 2017.
  15. Kim, J. S., Kim, M. K., Kim, H. K., Lim, S. and Kim, H. D., "Thermal Design and On-orbit Analysis of SNIPE Nano-Satellite," Proceeding of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2018, pp. 355-356.