DOI QR코드

DOI QR Code

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression

LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측

  • 김현일 (경북대학교 건설환경에너지공학부) ;
  • 한건연 (경북대학교 토목공학과) ;
  • 이재영 (한국건설기술연구원)
  • Received : 2020.02.12
  • Accepted : 2020.04.06
  • Published : 2020.06.01

Abstract

Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

기후변화의 영향으로 국지성 및 집중호우에 대한 발생 가능성이 높아지는 시점에서 과거에 침수피해를 입은 도시 유역에 대하여 실제 호우에 대한 침수 양상을 예측하는 것은 중요하다. 이에 수치해석 기반 프로그램과 함께 기계학습을 이용한 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM 신경망은 일련의 자료를 분석하는데 유용하지만, 딥 러닝을 수행하기 위하여 충분한 양의 자료를 필요로 한다. 그러나 단일 도시유역에 홍수를 일으킬 강우가 매년 일어나지 않기에 많은 홍수 자료를 수집하기에는 어려움이 있다. 이에 본 연구에서는 대상 유역에서 관측되는 강우 외에 전국 단위의 실제 호우를 예측 모형에 반영하였다. LSTM (Long Short-Term Memory) 신경망은 강우에 대한 총 월류량을 예측하기 위하여 사용되었으며, 목표값으로 SWMM (Storm Water Management Model)의 유출 모의 결과를 사용하였다. 침수 범위 예측을 위해서는 로지스틱 회귀를 사용하였으며, 로지스틱 회귀 모형의 독립 변수는 총 월류량이며 종속 변수는 격자 별 침수 발생 유무이다. 침수 범위 자료는 SWMM의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 통해 수집하였다. LSTM의 매개변수 조건에 따라 총 월류량 예측 결과를 비교하였다. 매개변수 설정에 따른 4가지의 LSTM 모형을 사용하였는데, 검증과 테스트 단계에 대한 평균 RMSE (Root Mean Square Error)는 1.4279 ㎥/s, 1.0079 ㎥/s으로 산정되었다. 최소 RMSE는 검증과 테스트에 대하여 각각 1.1656 ㎥/s, 0.8797㎥/s 으로 산정되었으며, SWMM모의 결과를 적절히 재현할 수 있음을 확인하였다. LSTM 신경망의 결과와 로지스틱 회귀를 연계하여 침수 범위 예측을 수행하였으며, 침수심 0.5m 이상을 고려하였을 때에 최대 침수면적 적합도가 97.33 %으로 나타났다. 본 연구에서 제시된 방법론은 딥 러닝에 기반하여 도시 홍수 대응능력을 향상 시키는데 도움이 될 것으로 판단된다.

Keywords

References

  1. Cultural Heritage Administration (2020). Flood history, Available at: http://royaltombs.cha.go.kr (Accessed: January 2, 2020).
  2. Gardner, K. K. and Vogel, R. M. (2005). "Predicting ground water nitrate concentration from land use." Ground Water, Vol. 43, No. 3, pp. 343-352. https://doi.org/10.1111/j.1745-6584.2005.0031.x
  3. Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543. https://doi.org/10.3390/w10111543
  4. Korea Meteorological Administration (KMA) (2020). Meteorological database, Observation Data, Available at: https://data.kma.go.kr (Accessed: December 1, 2019).
  5. Le, X. H., Ho, H. V., Lee, G. H. and Jung, S. H. (2019). "Application of long short-term memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387, DOI: 10.3390/w11071387.
  6. Moore, M. R. (2011). Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa, Master's Thesis, University of Iowa, United States of America (USA).
  7. Mosavi, A., Ozturk, P. and Chaw K. K. (2018). "Flood prediction using machine learning models: Literature review." Water, Vol. 10, No. 11, 1536, DOI: 10.3390/w10111536.
  8. Nandi, A., Mandal, A., Wilson, M. and Smith, D. (2016). "Flood hazard mapping in Jamaica using principal component analysis and logistic regression." Environment Earth Science, Vol. 75, No. 465, DOI: 10.1007/s12665-016-5323-0.
  9. Ozdemir, A. (2011). "Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)." Journal of Hydrology, Vol. 405, No. 1-2, pp. 123-136. https://doi.org/10.1016/j.jhydrol.2011.05.015
  10. Park, J. H., Kim, S. H. and Bae, D. H. (2019). "Evaluating appropriateness of the design methodology for urban sewer system." Journal of Korea Water Resource Association, KWRA, Vol. 52, No. 6, pp. 411-420. https://doi.org/10.3741/JKWRA.2019.52.6.411
  11. Pradhan, B. (2009). "Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing." Journal of Spatial Hydrology, Vol. 9, No. 2, pp. 1-18.
  12. Rai, P. K., Chahar, B. R. and Dhanya, C. T. (2017). "GIS-based SWMM model for simulating the catchment response to flood evetns." Hydrology Research, Vol. 48, No. 2, pp. 384-394. https://doi.org/10.2166/nh.2016.260
  13. Risi, R. D., Jalayer, F. and Paola, F. D. (2015). "Meso-scale hazard zoning of potentially flood prone areas." Journal of Hydrology, Vol. 527, pp. 316-325. https://doi.org/10.1016/j.jhydrol.2015.04.070
  14. Seoul Metropolitan City (2015). Comprehensive plan for storm and flood damage reduction, Korea, Vol. 1, Chapter 3, pp. 374-375.
  15. Seoul Metropolitan Government (2020). Flood criterion data, Available at: http://safecity.seoul.go.kr (Accessed: January 5, 2020)
  16. Shen, C. (2018). "A transdisciplinary review of deep learning research and its relevance for water resources scientists." Water Resources Research, Vol. 54, No. 11, pp. 8558-8593, DOI: 10.1029/2018WR022643.
  17. Son, A. L., Kim, B. H. and Han, K. Y. (2015). "A study on prediction of inundation area considering road network in urban area." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35, No. 2, pp. 307-318. https://doi.org/10.12652/Ksce.2015.35.2.0307