References
- Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012;22:R741-52. https://doi.org/10.1016/j.cub.2012.07.024
- Kumar V, Khan AA, Tripathi A, Dixit PK, Bajaj UK. Role of oxidative stress in various diseases: relevance of dietary antioxidants. J Phytopharm 2015;4:126-32.
- Masuda T, Shimazawa M, Hara H. Retinal diseases associated with oxidative stress and the effects of a free radical scavenger (edaravone). Oxid Med Cell Longev 2017;2017:9208489.
- Benedetto MM, Contin MA. Oxidative stress in retinal degeneration promoted by constant LED light. Front Cell Neurosci 2019;13:139. https://doi.org/10.3389/fncel.2019.00139
- Pan J, Kai G, Yuan C, Zhou B, Jin R, Yuan Y. Separation and determination of madecassic acid in triterpenic genins of Centella asiatica by high performance liquid chromatography using betacyclodextrin as mobile phase additive. Se Pu 2007;25:316-8.
- Orhan IE. Centella asiatica (L.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med 2012;2012:946259.
- Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC Complement Altern Med 2012;12:103.
- Bevege L. Centella asiatica: a review. Aust J Med Herbal 2004;16:15-27.
- Gray NE, Zweig JA, Caruso M, Martin MD, Zhu JY, Quinn JF, Soumyanath A. Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain Behav 2018;8:e01024. https://doi.org/10.1002/brb3.1024
- Anand T, Mahadeva N, Phani KG, Farhath K. Antioxidant and DNA damage preventive properties of Centella asiatica (L) Urb. Pharmacogn J 2010;2:53-8.
- G V, K SP, V L, Rajendra W. The antiepileptic effect of Centella asiatica on the activities of Na/K, Mg and Ca-ATPases in rat brain during pentylenetetrazol-induced epilepsy. Indian J Pharmacol 2010;42:82-6. https://doi.org/10.4103/0253-7613.64504
- Park JH, Choi JY, Son DJ, Park EK, Song MJ, Hellstrom M, Hong JT. Anti-inflammatory effect of titrated extract of Centella asiatica in phthalic anhydride-induced allergic dermatitis animal model. Int J Mol Sci 2017;18:E738.
- Ceremuga TE, Valdivieso D, Kenner C, Lucia A, Lathrop K, Stailey O, Bailey H, Criss J, Linton J, Fried J, Taylor A, Padron G, Johnson AD. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat. AANA J 2015;83:91-8.
- Maurer E, Tschopp M, Tappeiner C, Sallin P, Jazwinska A, Enzmann V. Methylnitrosourea (MNU)-induced retinal degeneration and regeneration in the zebrafish: histological and functional characteristics. J Vis Exp 2014;92:e51909.
- Kitamoto S, Matsuyama R, Uematsu Y, Ogata K, Ota M, Yamada T, Miyata K, Funabashi H, Saito K. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity. Mutat Res Genet Toxicol Environ Mutagen 2015;786-788:129-36. https://doi.org/10.1016/j.mrgentox.2015.05.001
- Chen YY, Liu SL, Hu DP, Xing YQ, Shen Y. N -methyl- N -nitrosourea-induced retinal degeneration in mice. Exp Eye Res 2014;121:102-13. https://doi.org/10.1016/j.exer.2013.12.019
- Yamada K. Cobalt: its role in health and disease. Met Ions Life Sci 2013;13:295-320. https://doi.org/10.1007/978-94-007-7500-8_9
- Caltana L, Merelli A, Lazarowski A, Brusco A. Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox Res 2009;15:348-58. https://doi.org/10.1007/s12640-009-9038-9
- Mou YH, Yang JY, Cui N, Wang JM, Hou Y, Song S, Wu CF. Effects of cobalt chloride on nitric oxide and cytokines/chemokines production in microglia. Int Immunopharmacol 2012;13:120-5. https://doi.org/10.1016/j.intimp.2012.03.017
- Kuehn S, Hurst J, Rensinghoff F, Tsai T, Grauthoff S, Satgunarajah Y, Dick HB, Schnichels S, Joachim SC. Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model. Exp Eye Res 2017;155:107-20. https://doi.org/10.1016/j.exer.2017.01.003
- Grimm C, Willmann G. Hypoxia in the eye: a two-sided coin. High Alt Med Biol 2012;13:169-75. https://doi.org/10.1089/ham.2012.1031
- Konig J, Ott C, Hugo M, Jung T, Bulteau AL, Grune T, Hohn A. Mitochondrial contribution to lipofuscin formation. Redox Biol 2017;11:673-81. https://doi.org/10.1016/j.redox.2017.01.017
- Rodolfo C, Campello S, Cecconi F. Mitophagy in neurodegenerative diseases. Neurochem Int 2018;117:156-66. https://doi.org/10.1016/j.neuint.2017.08.004
- Rodgers KJ, Ford JL, Brunk UT. Heat shock proteins: keys to healthy ageing? Redox Rep 2009;14:147-53. https://doi.org/10.1179/135100009x392593
- Firlag M, Kamaszewski M, Gaca K, Balasinska B. Age-related changes in the central nervous system in selected domestic mammals and primates. Postepy Hig Med Dosw 2013;67:269-75. https://doi.org/10.5604/17322693.1044490
- Eldred GE, Katz ML. Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 1988;47:71-86. https://doi.org/10.1016/0014-4835(88)90025-5
- Sparrow JR, Zhou J, Cai B. DNA is a target of the photodynamic effects elicited in A2E-laden RPE by bluelight illumination. Invest Ophthalmol Vis Sci 2003;44:2245-51. https://doi.org/10.1167/iovs.02-0746
- Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001;42:1051-6.
- Tsubura A, Yuri T, Yoshizawa K, Uehara N, Takada H. Role of fatty acids in malignancy and visual impairment: epidemiological evidence and experimental studies. Histol Histopathol 2009;24:223-34.
- Nakajima M, Yuge K, Senzaki H, Shikata N, Miki H, Uyama M, Tsubura A. Photoreceptor apoptosis induced by a single systemic administration of N-methyl-N-nitrosourea in the rat retina. Am J Pathol 1996;148:631-41.
- Tsubura A, Yoshizawa K, Kuwata M, Uehara N. Animal models for retinitis pigmentosa induced by MNU; disease progression, mechanisms and therapeutic trials. Histol Histopathol 2010;25:933-44.
- Zulliger R, Lecaude S, Eigeldinger-Berthou S, Wolf-Schnurrbusch UE, Enzmann V. Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina. Graefes Arch Clin Exp Ophthalmol 2011;249:859-69. https://doi.org/10.1007/s00417-010-1584-6
- Kaarniranta K, Pawlowska E, Szczepanska J, Jablkowska A, Blasiak J. Role of mitochondrial DNA damage in ROS-mediated pathogenesis of age-related macular degeneration (AMD). Int J Mol Sci 2019;20:2374. https://doi.org/10.3390/ijms20102374
- Zhang C, Baffi J, Cousins SW, Csaky KG. Oxidant-induced cell death in retinal pigment epithelium cells mediated through the release of apoptosis-inducing factor. J Cell Sci 2003;116:1915-23. https://doi.org/10.1242/jcs.00390
- Farrokh-Siar L, Rezai KA, Patel SC, van Seventer G, Ernest JT. Human fetal retinal pigment epithelium induced apoptosis of Jurkat T-cells involves caspase activation and PARP cleavage. Invest Ophthalmol Vis Sci 2002;43:2288.
- Bellezza I. Oxidative stress in age-related macular degeneration: Nrf2 as therapeutic target. Front Pharmacol 2018;9:1280. https://doi.org/10.3389/fphar.2018.01280
- Choo YY, Lee S, Nguyen PH, Lee W, Woo MH, Min BS, Lee JH. Caffeoylglycolic acid methyl ester, a major constituent of sorghum, exhibits anti-inflammatory activity via the Nrf2/heme oxygenase-1 pathway. RSC Adv 2015;5:17786-96. https://doi.org/10.1039/C4RA13847C
- Palczewski K. G protein-coupled receptor rhodopsin. Annu Rev Biochem 2006;75:743-67. https://doi.org/10.1146/annurev.biochem.75.103004.142743
- Mannu GS. Retinal phototransduction. Neurosciences 2014;19:275-80.
- Zhao Y, Wieman HL, Jacobs SR, Rathmell JC. Mechanisms and methods in glucose metabolism and cell death. Methods Enzymol 2008;442:439-57. https://doi.org/10.1016/S0076-6879(08)01422-5
- Huang CY, Pai YC, Yu LC. Glucose-mediated cytoprotection in the gut epithelium under ischemic and hypoxic stress. Histol Histopathol 2017;32:543-50.
Cited by
- Variation in Growth of Centella asiatica of Samosir - Indonesia Accession with Phosphorus Fertilizer Cultivated at Samosir Field vol.1819, pp.1, 2021, https://doi.org/10.1088/1742-6596/1819/1/012015
- Hepatoprotective effect of Centella asiatica 50% ethanol extract against acetaminophen-induced acute liver injury in BALB/c mice vol.37, pp.2, 2021, https://doi.org/10.1007/s43188-020-00063-0
- Preventive Effects against Retinal Degeneration by Centella asiatica Extract (CA-HE50) and Asiaticoside through Apoptosis Suppression by the Nrf2/HO-1 Signaling Pathway vol.10, pp.4, 2020, https://doi.org/10.3390/antiox10040613
- Phytochemical screening and biomass production of Centella asiatica (L.) Urb of Samosir - Indonesia accession cultivated on acid soil with different phosphorus treatments vol.782, pp.3, 2020, https://doi.org/10.1088/1755-1315/782/3/032021