DOI QR코드

DOI QR Code

수변 경계종인 쥐방울덩굴의 유전적 다양성 분석

An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta

  • Nam, Bo Eun (Department of Biology Education, Seoul National University) ;
  • Park, Hyun Jun (Department of Biology Education, Seoul National University) ;
  • Son, Ga Yeon (Department of Biology Education, Seoul National University) ;
  • Kim, Jae Geun (Department of Biology Education, Seoul National University)
  • 투고 : 2020.05.01
  • 심사 : 2020.05.16
  • 발행 : 2020.05.31

초록

수변 및 육상 식생의 경계에 서식하는 쥐방울덩굴(Aristolochia contorta)은 국내 취약종인 꼬리명주나비(Sericinus montela) 유충의 유일한 기주식물이라는 점에서 높은 보전가치를 지닌다. 개체군의 장기적인 유지에 있어서 유전적 다양성은 반드시 고려되어야 하며, 이를 위하여 기존 개체군의 유전적 다양성을 파악하는 과정이 선행되어야 한다. 쥐방울덩굴 개체군이 장기적으로 유지되고 있는 네 서식처의 개체군을 대상으로 개체들의 잎을 채집하여 DNA를 추출하였으며, 5개의 무작위 프라이머를 이용한 RAPD-PCR을 수행하여 각 개체군의 유전적 다양성을 비교하고 개체군 간의 유연관계를 파악하였다. 개체군 내 유전적 다양성은 4개 개체군 중 가평 개체군(GP)이 가장 높았으나, 전반적인 유전적 다양성은 다른 종에 비해 낮은 편으로 나타났다(h: 0.0607 ~ 0.1491; I: 0.0819 ~ 0.1759). 또한 가평 개체군의 경우 지리적 거리와 무관하게 다른 개체군들과의 유전적 거리가 큰 편으로 나타났다. 이는 파편화된 서식지와 더불어 낮은 유성생식 비율에서 기인한 것으로 추정된다. 쥐방울덩굴 개체군의 보전을 위해서는 개체군 혼합 식재와 적절한 차광이나 물리적 지지와 같이 쥐방울덩굴의 유성생식 을 촉진하는 환경이 적극적으로 고려되어야 할 것이다.

Northern pipevine (Aristolochia contorta) commonly inhabits marginal areas between waterside and terrestrial vegetation. In particular, A. contorta is ecologically important in the marginal areas as a food plant of dragon swallowtail butterfly (Sericinus montela), which is designated as vulnerable species in the Republic of Korea. For long-term sustainability of the plant population, assessment of the genetic diversity of exist populations should be conducted. Genomic DNA of A. contorta leaf samples were extracted from four populations where the vigorous growth were observed in the South Korea. Intra-population genetic diversity and inter-population genetic distance were assessed using randomly amplified polymorphic DNA (RAPD) with five polymorphic random primers. Overall genetic diversity was lower, compared to other wetland species (h: 0.0607 ~ 0.1401; I: 0.0819 ~ 0.1759), while GP showed the highest intra-population genetic diversity. Despite of the geographical distance, GP showed the larger genetic distance from other populations. This result seemed to be caused by the fragmented habitat and lower sexual reproduction of A. controta. Mixture of the different source populations and construction of the proper environmental condition such as shade and physical support for sexual reproduction should be considered for conservation of A. contorta population.

키워드

참고문헌

  1. DeWalt, SJ, Schnitzer, SA and Denslow, JS (2000). Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest, J. of Tropical Ecology, 16, pp. 1-9. [DOI: 10.1017/S0266467400001231]
  2. Gamfeldt, L and Kallstrom, B (2007). Increasing intraspecific diversity increases predictability in population survival in the face of perturbations, Oikos, 116(4), pp. 700-705. [DOI: 10.1111/j.0030-1299.2007.15382.x]
  3. Global Biodiversity Information Facility (GBIF) (2020). http://data.gbif.org/.
  4. Hegarty, EE (1989). Canopy dynamics of lianes and trees in subtropical rainforest. Australian Journal of Ecology, 14(4), pp. 559-560. [DOI: 10.1111/j.1442-9993.1989.tb01461.x.]
  5. Lesica, P and Allendorf, FW (1999). Ecological genetics and the restoration of plant communities: mix or match?, Restoration Ecology, 7(1), pp. 42-50. [DOI: 10.1046/j.1526-100X.1999.07105.x]
  6. Min, SJ, Kim, H-T and Kim, JG (2012). Assessment of genetic diversity of Typha angustifolia in the development of cattail stands, J. of Ecology and Field Biology, 35(1), pp. 27-34. [DOI: 10.5141/JEFB.2012.004]
  7. Naiman, RJ, Bechtold, JS, Drake, DC, Latterell, JJ, O'Keefe, TC, Balian and EV (2005). Origins, patterns, and importance of heterogeneity in riparian systems. In Ecosystem Function in Heterogeneous Landscapes, GM Lovett, MG Turner and KC Weather (eds.), Springer, New York, NY, pp. 279-309.
  8. Nakonechnaya, OV, Kholina, AB, Koren, OG and Zhuravlev, YN (2012). Genetic diversity of a rare species Aristolochia contorta Bunge (Aristolochiaceae) in Primorsky Krai, Russian J. of Genetics, 48(2), pp. 152-162. [DOI: 10.1134/S1022795411120088]
  9. Nam, BE, Nam, JM and Kim, JG (2016). Effects of habitat differences on the genetic diversity of Persicaria thunbergii, J. of Ecology and Environment, 40, p. 11. [DOI: 10.1186/s41610-016-0012-1]
  10. Nei, M (1973). Analysis of gene diversity in subdivided populations, Proceedings of the National Academy of Sciences of the United States of America, 70, pp. 3321-3323. [DOI: 10.1073/pnas.70.12.3321]
  11. Oksanen J, Blanchet, FG, Kindt, R, Legendre, P, Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH and Wagner, H (2013). Package 'vegan'. [http://cran.rproject.org/web/packages/vegan/index.html]
  12. Park, H and Kim, JG (2020). Temporal and spatial variations of vegetation in a riparian zone of South Korea, J. of Ecology and Environment, 44, p. 9. [DOI: 10.1186/s41610-020-00152-z]
  13. Park, SH, Nam, BE and Kim, JG (2019). Shade and physical support are necessary for conserving the Aristolochia contorta population, Ecological Engineering, 135, pp. 108-115. [DOI: 10.1016/j.ecoleng.2019.05.019]
  14. Park, HJ, Park, H, Son, GY, Nam, BE and Kim, JG (2020). Biotic and abiotic effects on the growth and reproduction of Aristolochia contorta, J. of Wetlands Research, 22(2), pp. 113-120. [Korean Literature] [DOI: 10.17663/JWR.2020.22.2.113]
  15. R Core Team (2019). R: A Language and Environment and Statistical Computing, R Foundation for Statistial Computing, Vienna, Austria. https://www.R-project.org.
  16. Soykan, CU, Brand, LA, Ries, L, Stromberg, JC, Hass, C, Simmons Jr., DA, Patterson, WJD and Sabo, JL (2012). Multitaxonomic diversity patterns along a desert riparian-upland gradient, PLoS ONE, 7(1), p. e28235. [DOI: 10.1371/journal.pone.0028235]
  17. Vidon, PGF and Hill, AR (2004). Landscape controls on the hydrology of stream riparian zones. J. of Hydrology, 292, pp. 210-228. [DOI: 10.1016/j.jhydrol.2004.01.005]
  18. Voronkova, NM, Kholina, AB, Koldaeva, MN, Nakonechnaya, OV and Nechaev, VA (2018). Morphophysiological dormancy, germination, and cryopreservation in Aristolochia contorta seeds, Plant Ecology and Evolution, 151(1), pp. 77-86. [DOI: 10.5091/plecevo.2018.1351]
  19. Wimp, GM, Young, WP, Woolbright, SA, Martinsen, GD, Keim, P and Whitham, TG (2004). Conserving plant genetic diversity for dependent animal communities, Ecology Letters, 7, pp. 776-780. [DOI: 10.1111/j.1461-0248.2004.00635.x]
  20. Williams, JGK, Kubelik, AR, Livak, KJ, Rafalski, JA and Tingey, SV (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research, 18, pp. 6531-6535. [DOI: 10.1093/nar/18.22.6531]
  21. Yeh, FC and Boyle, TJB (1997). Population genetic analysis of codominant and dominant markers and quantitative traits, Belgian J. of Botany, 129, pp. 157-163.
  22. Zhou, J, Chen, X, Cui, Y, Sun, W, Li, Y, Wang, Y, Song, J and Yao, H (2017). Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species, International J. of Molecular Sciences, 18, p. 1839. [DOI: 10.3390/ijms18091839]