References
- Kim, N. H., and Yu, Y. S. (2013). Fall recognition algorithm using gravity-weighted 3-axis accelerometer data. Journal of the Institute of Electronics and Information Engineers, 50(6), 254-259. DOI: https://doi.org/10.5573/ieek.2013.50.6.254
- Su, X., Tong, H., and Ji, P. (2014). Activity recognition with smartphone sensors. Tsinghua science and technology, 19(3), 235-249. DOI: https://doi.org/10.1109/TST.2014.6838194
- Özdemir, A., and Barshan, B. (2014). Detecting falls with wearable sensors using machine learning techniques. Sensors, 14(6), 10691-10708. DOI: https://doi.org/10.3390/s140610691
- Kwon, T.W, Lee, J. Y., and Jung, K. D. (2017). Design of Cloud-based Context-aware System Based on Falling Type. International Journal of Internet, Broadcasting and Communication, 9(4), 44-50. IJIBC. DOI: http://dx.doi.org/10.7236/IJIBC.2018.10.3.42
- Kwon, T.W, Yun, D.Y, Lee, J.Y and Jung, K.D. (2018). A Study of Behaviors Recognition Method using Smartphone Sensors. Journal of Engineering and Applied Sciences, (13): 8722-8725. DOI: https://doi.org/10.36478/jeasci.2018.8722.8725
- Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 6(1), 20-29. DOI: https://doi.org/10.1145/1007730.1007735
- Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). Automatic analysis of malware behavior using machine learning. Journal of Computer Security, 19(4), 639-668. DOI: https://doi.org/10.3233/JCS-2010-0410
- Shin, S., and Cha, J. (2018). Human Activity Recognition System Using Multimodal Sensor and Deep Learning Based on LSTM. Transactions of the Korean Society of Mechanical Engineers. A, 42(2), 111-121. DOI: https://doi.org/10.3795/KSME-A.2018.42.2.111
- Lehner, W., and Sattler, K. U. (2010, March). Database as a service (DBaaS). In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010) (pp. 1216-1217). IEEE. DOI: https://doi.org/10.1109/ICDE.2010.5447723
- Lee, S., Kim, H., Seok, H., & Nang, J. (2017). Comparison of Fine-Tuned Convolutional Neural Networks for Clipart Style Classification. International Journal of Internet, Broadcasting and Communication, 1(1), 4. IJIBC. DOI: https://doi.org/10.7236/IJIBC.2017.9.4.1