
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2020.27.2.97 ISSN(Online) 2287-6081
Volume 27, Number 2 (May 2020), Pages 97–108

COMMON FIXED POINT RESULTS ON FUZZY METRIC

SPACES AND MODULAR METRIC SPACES VIA SIMULATION

FUNCTION

Bhavana Deshpande

Abstract. In this paper, we prove common fixed point theorems for two map-
pings by using simulation function on fuzzy metric spaces. We also deduce some
consequences in modular metric spaces.

1. Introduction and Preliminaries

George and Veeramani [5] modified the concept of fuzzy metric space introduced

by Kramosil and Michalek [8] and defined the Hausdorff topology on fuzzy metric

spaces which has important application [14] in quantum particle physics.

Recently, the notion of simulation function was given by Khojasteh et al. [7].

In [9] and [11] authors revised the definition of simulation function introduced by

Khojasteh et al. [7].

Definition 1.1 ([9, 11]). A mapping ζ: [0,∞)×[0,∞) → R is a simulation function

if it satisfies the following conditions:
(ζ1)ζ(t, s) < s− t for all t, s > 0.
(ζ2) If {tn}, {sn}are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0
and tn < sn for all n ∈ N then lim supn→∞ sup ζ(tn, sn) < 0.
The set of all simulation functions is denoted by Z.

Several examples of simulation function are given in [4], [7], [9]. [10], [13], [15].

It is clear from (ζ1) that ζ(t, t) < 0 when t > 0.

Definition 1.2 (Schweizer and Sklar [12]). A binary operation ∗ : [0, 1]×[0, 1] → [0,

1] is continuous t-norm if it satisfies the following conditions:
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(1) ∗ is commutative and associative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
A few examples of continuous t-norm are

a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b = max{a+ b− 1, 0}.

Definition 1.3 (George and Veeramani [5]). A fuzzy metric space is an ordered

triple (X, M, ∗) such that X is an arbitrary non-empty set, ∗ is a continuous t-norm

and M is a fuzzy set on X2 × [0, ∞) satisfying the following conditions, for all x, y,

z ∈ X and s, t > 0 :
(FM − 1) M(x, y, 0) > 0,
(FM − 2) M(x, y, t) = 1 iff x = y,
(FM − 3) M(x, y, t) = M(y, x, t),
(FM − 4)M(x, y, t)∗ M(y, z, s) ≤ M(x, z, t+ s),
(FM − 5) M(x, y, ·) : [0, ∞) → [0, 1] is continuous.
then the triple (X, M, ∗) is called a fuzzy metric space. If we replace (FM − 4)

by

(FM − 6)M(x, y, t) ∗M(y, z, t) ≤ M(x, z, t)

then the triple (X,M∗) is called a non-Archimedean fuzzy metric space. We note

that if (X,M, .) is nondecreasing for all x, y, z ∈ X then (FM − 6) is equivalent to

(FM − 6)M(x, y, t) ∗M(y, z, s) ≤ M(x, z,max{t, s})

that implies (FM − 4).Thus each non-Archimedean fuzzy metric space is a fuzzy

metric space, if (X,M, .) is nondecreasing for all x, y, z ∈ X.

Definition 1.4. Let (X, M, ∗) be a fuzzy metric space. Then

(i) a sequence {xn} converges to x0 ∈ X iff for all t > 0 limn→∞M(xn, x0, t) = 1

(ii) a sequence {xn} in X is a Cauchy sequence [5] if and only if for all ε ∈ (0, 1)

and t > 0 there exists n0 such that M(xn, xm, t) > 1− ε for all m,n ≥ n0

(iii) (X, M, ∗) is complete [6] if every Cauchy sequence converges to some x ∈ X.

Definition 1.5. ([1]). Let (X, M, ∗) be a fuzzy metric space. The fuzzy metric M

is called triangular when

1

M(x, y, t)
− 1 ≤ 1

M(x, z, t)
− 1 +

1

M(z, y, t)
− 1 for all x, y, z ∈ X all t > 0.
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2. Common Fixed Point via Simulation Function on Fuzzy
Metric Spaces

Theorem 2.1. Let (X, M, ∗) be a non-Archimedean fuzzy metric space with M

triangular and let A,B : X → X be two given mappings. Let there exists ζ ∈ Z such

that

(2.1) ζ(
1

M(Ax,Ay, t)
− 1,

1

M(Bx,By, t)
− 1) ≥ 0 for all x, y ∈ X

If AX ⊆ BX and AX or BX is a complete subset of X. Then A and B have

unique coincidence point in X. Moreover if A and B are weakly compatible then A

and B have a unique common fixed point in X.

Proof. First of all we will prove that if coincidence point of A and B exist then it is

unique.

Suppose if possible v1 and v2 are two distinct coincidence points of A and B then

there exists two points u1, u2 ∈ X such that

Au1 = Bu1 = v1 ̸= v2 = Au2 = Bu2

then by (2.1) we have

0 ≤ ζ(
1

M(Au1, Au2, t)
− 1,

1

M(Bu1, Bu2, t)
− 1)

= ζ(
1

M(v1, v2, t)
− 1,

1

M(v1, v2, t)
− 1)

< 0,

but this is a contradiction. Thus we have v1 = v2.

Let x0 ∈ X be arbitrary. Since AX ⊆ BX therefore there exists x1 ∈ X such

that Ax0 = Bx1 continuing this process, we obtain Axn = Bxn+1 for all n ∈ N

Let Axn = Bxn+1 = yn.If yn = yn+1 for some n ∈ N then Bxn+1 = yn = yn+1 =

Axn+1.

Thus xn+1 is the unique coincidence point of A and B. Therefore let us suppose

that yn ̸= yn+1 for all n ∈ N. Hence we have

0 ≤ ζ(
1

M(Axn, Axn+1, t)
− 1,

1

M(Bxn, Bxn+1, t)
− 1)

= ζ(
1

M(yn, yn+1, t)
− 1,

1

M(yn−1, yn, t)
− 1)(2.2)

< S(yn−1, yn,t)− S(yn, yn+1,t),
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where S(yn−1, yn, t) =
1

M(yn−1,yn,t)
− 1.

Therefore {S(yn−1, yn, t)} is a decreasing sequence of + ive real numbers. Thus

there exists z ≥ 0 such that

(2.3) lim
n→∞

S(yn−1, yn, t) = z

Suppose z > 0 then by (2.2) and (ζ2) it follows that

0 ≤ lim
n→∞

sup ζ(S(yn, yn+1, t), S(yn−1, yn, t)) < 0

where tn = S(yn, yn+1, t) < S(yn−1, yn, t) = sn and tn, sn → z > 0.

Clearly this is a contradiction and so z = 0.By (2.3) we obtain

(2.4) lim
n→∞

M(yn−1yn, t) = 1

Now we prove that the sequence {yn} is Cauchy. Suppose if possible {yn} is not

a Cauchy sequence in X, therefore limm,n→∞ infM(ym, yn, t0) < 1for some t0 > 0.

Suppose there exists 0 < ϵ < 1and two sub sequences {ymk
} and {ynk

} of {yn}such
that nk is the smallest index for which nk > mk ≥ k and

(2.5) M(ymk
, ynk

, to) ≤ 1− ϵ

and

(2.6) M(ymk
, ynk−1

, to)̇ > 1− ϵ

Now we have

1− ϵ ≥ M(ymk
, ynk

, to)

≥ M(ymk
, ynk−1

, to)̇ ∗M(ynk−1
, ynk

, t0)

> 1− ϵ ∗M(ynk−1
, ynk

, t0)

Letting k → ∞ and using (2.4), we get

(2.7) lim
k→∞

M(ymk
, ynk

, to) = 1− ϵ

By the same reasoning as above, we obtain

1− ϵ ≥ M(ymk
, ynk

, to)

≥ M(ymk
, ymk−1

, to) ∗M(ymk−1
, ynk−1

, t0) ∗M(ynk−1
, ynk

, t0)

and

M(ymk−1
, ynk−1

, t0) ≥ M(ymk−1,ymk
, t0) ∗M(ymk

, ynk
, to) ∗M(ynk

, ynk−1
, t0)
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By letting k → ∞ and using (2.4) and (2.7), we obtain

(2.8) lim
k→∞

M(ymk−1
, ynk−1

, t0) = 1− ∈

Using (2.7) and (2.8), we obtain

lim
k→∞

S(ymk
, ynk

, to) = lim
k→∞

1

M(ymk
, ynk

, to)
− 1

= lim
k→∞

1−M(ymk
, ynk

, to)

M(ymk
, ynk

, to)

=
1− (1− ϵ)

1− ϵ

=
ϵ

1− ϵ

and

lim
k→∞

S(ymk−1
, ynk−1

, to) =
ϵ

1− ϵ
Let

tk = S(ymk
, ynk

, to)

sk = S(ymk−1
, ynk−1

, to).

Thus by using (2.1) and (ζ2) we have

0 ≤ lim
k→∞

sup ζ(S(ymk
, ynk

, to), S(ymk−1
, ynk−1

, to)) < 0.

Above inequality is not true and hence {yn} is a Cauchy sequence in X. Now

since AX or BX is a complete subset of (X,M, ∗) therefore there exists u ∈ X such

that yn → Bu as n → ∞. If there exists a subsequence {ynk
} of {yn} such that

ynk
= Au then letting k → ∞ we get Au = Bu and hence the claim. So we suppose

that ynk
̸= Au for all n ∈ N.

Since yn−1 ̸= yn there exists a subsequence {ynk
} of {yn} such that ynk

̸= Bu

for k ∈ N.Using (2.1) we have

0 ≤ ζ(
1

M(Axnk+1
, Au, t)

− 1,
1

M(Bxnk+1
, Bu, t)

− 1)

= ζ(S(ynk+1
, Au, t), S(ynk

, Bu, t))

< S(ynk
, Bu, t)− S(ynk+1,

Au, t).

This shows that ynk+1
→ Au and hence Au = Bu is a unique coincidence point

of A and B. If A and B are weakly compatible then by using well known result due

to Jungck, we can prove the existence of unique common fixed point of A and B.
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Theorem 2.2. Let (X,M, ∗) be a non- Archimedean fuzzy metric space with M

triangular and A,B : X → X be two given mappings. Suppose there exists ζ ∈ Z

and a function ϕ : [0,∞) → [0,∞) such that

(2.9) ζ(
1

M(Ax,Ay, t)
− 1, ϕ(

1

M(Bx,By, t)
− 1) ≥ 0 for all x, y ∈ X

(2.10) 0 < ϕ(t) ≤ t for all t ∈ (0,+∞) and ϕ(0) = 0

If AX ⊆ BX and AX or BX is a complete subset of X. Then A and B have

unique coincidence point in X. Moreover if A and B are weakly compatible then A

and B have a unique common fixed point in X.

Proof. First of all we will prove that if coincidence point of A and B exist then it is

unique.

suppose if possible v1 and v2 are two distinct coincidence points of A and B then

there exists two points u1, u2 ∈ X such that

Au1 = Bu1 = v1 ̸= v2 = Au2 = Bu2

then by (2.9) we have

0 ≤ ζ(
1

M(Au1, Au2, t)
− 1, ϕ(

1

M(Bu1, Bu2, t)
− 1))

< ϕ(
1

M(v1, v2, t)
− 1)− 1

M(v1, v2, t)
− 1)

≤ 0,

but this is a contradiction. Thus we have v1 = v2.

Let x0 ∈ X be arbitrary. Since AX ⊆ BX therefore there exists x1 ∈ X such

that Ax0 = Bx1 continuing this process, we obtain Axn = Bxn+1 for all n ∈ N

Let Axn = Bxn+1 = yn.If yn = yn+1 for some n ∈ N then Bxn+1 = yn = yn+1 =

Axn+1.

Thus xn+1 is the unique coincidence point of A and B. Therefore let us suppose

that yn ̸= yn+1 for all n ∈ N.Hence we have

0 ≤ ζ(
1

M(Axn, Axn+1, t)
− 1, ϕ(

1

M(Bxn, Bxn+1, t)
− 1)

= ζ(
1

M(yn, yn+1, t)
− 1, ϕ(

1

M(yn−1, yn, t)
− 1)
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< ϕ(
1

M(yn−1, yn, t)
− 1), (

1

M(yn, yn+1, t)
− 1)(2.11)

= S(yn−1, yn,t)− S(yn, yn+1,t) for all n ∈ N

where S(yn−1, yn, t) =
1

M(yn−1,yn,t)
− 1.

Therefore { S(yn−1, yn, t)} is a decreasing sequence of + ive real numbers. Thus

there exists z ≥ 0 such that

(2.12) lim
n→∞

S(yn−1, yn, t) = z

Suppose z > 0 then

0 ≤ lim
n→∞

sup ζ(S(yn, yn+1, t), ϕ(S(yn−1, yn, t)) < 0

where tn = S(yn, yn+1, t), sn = ϕ(S(yn−1, yn, t)) < S(yn−1, yn, t), and tn <

sn, tn, sn → z > 0.

This is a contradiction. Thus we have

lim
n→∞

S(yn−1yn, t) = 0

By (2.12)we obtain

(2.13) lim
n→∞

M(yn, yn+1, t) = 1

Now we claim that the sequence {yn} is Cauchy sequence in (X, d).Suppose if

possible {yn} is not a Cauchy sequence in X, therefore limm,n→∞ infM(ym, yn, t0) <

1 for some t0 > 0.

Suppose there exists 0 < ϵ < 1and two sub sequences {ymk
} and {ynk

} of {yn}such
that nk is the smallest index for which nk > mk ≥ k and

(2.14) M(ymk
, ynk

, to) ≤ 1− ϵ

and

(2.15) M(ymk
, ynk−1

, to)̇ > 1− ϵ

Now we have

1− ϵ ≥ M(ymk
, ynk

, to)

≥ M(ymk
, ynk−1

, to)̇ ∗M(ynk−1
, ynk

, t0)

≥ 1− ϵ ∗M(ynk−1
, ynk

, t0)

Letting k → ∞ and using (2.13), we get

(2.16) lim
k→∞

M(ymk
, ynk

, to) = 1− ϵ



104 Bhavana Deshpande

By the same reasoning as above, we obtain

1− ϵ ≥ M(ymk
, ynk

, to)

≥ M(ymk
, ymk−1

, to) ∗M(ymk−1
, ynk−1

, t0) ∗M(ynk−1
, ynk

, t0)

and

M(ymk−1
, ynk−1

, t0) ≥ M(ymk−1,ymk
, t0) ∗M(ymk

, ynk
, to) ∗M(ynk

, ynk−1
, t0)

From the last inequality, by letting k → ∞ and using (2.13), (2.16) we get

(2.17) lim
k→∞

M(ymk−1
, ynk−1

, t0) = 1− ∈

By letting k → ∞ and using (2.16) and (2.17) we obtain

lim
k→∞

S(ymk
, ynk

, to) = lim
k→∞

1

M(ymk
, ynk

, to)
− 1

= lim
k→∞

1−M(ymk
, ynk

, to)

M(ymk
, ynk

, to)

=
1− (1− ϵ)

1− ϵ

=
ϵ

1− ϵ

and

lim
k→∞

S(ymk−1
, ynk−1

, to) =
ϵ

1− ϵ
Let

tk = S(ymk
, ynk

, to)

sk = ϕ(S(ymk−1
, ynk−1

, to)) < S(ymk−1
, ynk−1

t0)

By (2.9), we have

0 ≤ ζ(
1

M(Axmk
, Aynk

, t0)
− 1, ϕ(

1

M(Bxmk
, Bxnk

, t0)
− 1)

= ζ(
1

M(ymk
, ynk

, t0)
− 1, ϕ(

1

M(ymk−1
, ynk−1,

t0)
− 1)(2.18)

= ζ(S(ymk
, ynk

, t0), ϕ(S((ymk−1
, ynk−1,

t0))

< ϕ(S(ymk−1
, ynk−1

, t0)− S(ymk,ynk
, t0)

→ 0 as k → ∞

From (2.18) we deduce that

lim
k→∞

sup ζ(S(ymk
, ynk

, to), ϕ(S(ymk−1
, ynk−1

, to)) = 0.
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Clearly this is a contradiction to (ζ2) and hence we conclude that {yn} is a Cauchy
sequence in X. Now since AX or BX is a complete subset of (X,M, ∗) therefore

there exists u ∈ X such that yn → Bu as n → ∞. If there exists a subsequence

{ynk
} of {yn} such that ynk

= Au then letting k → ∞ we get Au = Bu and hence

the claim. So we suppose that ynk
̸= Au for all n ∈ N.

Since yn−1 ̸= yn there exists a subsequence {ynk
} of {yn} such that ynk

̸= Bu

for k ∈ N.Using (2.9) we have

0 ≤ ζ(
1

M(Axnk+1
, Au, t)

− 1, ϕ(
1

M(Bxnk+1
, Bu, t)

− 1)

= ζ(S(ynk+1
, Au, t), ϕ(S(ynk

, Bu, t)))

< ϕ(S(ynk
, Bu, t)− S(ynk+1,

Au, t)).

< S(ynk
, Bu, t)− S(ynk+1

, Au, t) for all n ∈ N

This shows that ynk+1
→ Au and hence Au = Bu is a unique coincidence point

of A and B. If A and B are weakly compatible then by using well known result due

to Jungck, we can prove the existence of unique common fixed point of A and B.

Theorem 2.3. Let (X,M, ∗) be a non- Archimedean fuzzy metric space and A,B :

X → X be two given mappings. Suppose there exists ζ ∈ Z and a function k ∈ (0, 12)

such that for all x, y ∈ X

ζ(
1

M(Ax,Ay, t)
−1, kmax { 1

M(Bx,By, t)
−1,

1

M(Bx,Ax, t)
−1,

1

M(By,Ay, t)
− 1,

1

M(Bx,Ay, t)
−1}) ≥ 0(2.19)

If AX ⊆ BX and AX or BX is a complete subset of X. Then A and B have

unique coincidence point in X. Moreover if A and B are weakly compatible then A

and B have a unique common fixed point in X.

Corollary 2.4. If in (2.19) we put Bx = x for all x ∈ X, then A : X → X has a

unique fixed point in (X, d).

3. Extended Approach to a Modular Metric

Definition 3.1 ([2, 3]). Let ω : (0,∞) ×X ×X → [0,∞) be a function satisfying

the following conditions for all λ, µ > 0 and x, , y, z ∈ X

(i) x = y iff ω(λ, x, y) = 0 for all λ > 0.

(ii) ω(λ, x, y) = ω(λ, y, x)
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(iii)ω(λ+ µ, x, y) ≤ ω(λ, x, y) + ω(µ, z, y).

Then ω is called a modular metric on X. If we replace (i) by

(iv) ω(λ, x, x) = 0 for all λ > 0,

then ω is called pseudo modular metric on X. If we replace (iii) by

(v) ω(λ, x, y) ≤ ω(λ, x, z) + ω(λ, z, y) for all λ > 0 and x, y, z ∈ X.

Then ω is called non-Archimedean. Moreover ω is called convex if the following

inequality is satisfied for all λ, µ > 0 and x, , y, z ∈ X

(vi) ω(λ+ µ, x, z) ≤ λ
λ+µω(λ, x, z) +

µ
λ+µω(µ, z, y).

Remark 3.2. (i) A metric on a set X is a finite distance between any two points of

X while a modular on a same set X is a way to consider a nonnegative “field of veloc-

ities” precisely an average velocity ω(λ, x, y) is associated to each λ > 0, ω(λ, x, y)

that is one takes time λ to move from x to y.

(ii)([6]). Let (X,M, ∗) be a triangular fuzzy metric space. Define a function

ω : (0,∞)×X ×X → [0,∞) as

(3.1) ω(λ, x, y) =
1

M(x, y, λ)
− 1

for all x, y ∈ X and λ > 0.Then ωλ is a modular metric on X.

Definition 3.3. Let Xω be a modular metric space. Then

(i) {xn} in Xω is called ω−convergent to x ∈ Xω, if ω(λ, xn, x) → 0 as n → ∞
for all λ > 0. In this case we say x is the ω−limit of {xn}.

(ii) {xn} in Xω is called ω−Cauchy if ω(λ, xn, xm) → 0 as m,m → ∞ for all

λ > 0.

(iii) A subset Y of Xω is called ω−complete if any ω−Cauchy sequence in Y is a

ω−convergent sequence and it’s ω−limit is in Y.

Now we state two existence results for unique fixed point in the setting of modular

space. Clearly these results are modular counterparts of Theorem 3.1 and Theorem

3.2.

Theorem 3.4. Let Xω be a non-Archimedean modular metric space and let A,B :

X → X be two given mappings. Let there exists ζ ∈ Z such that

(3.2) ζ(ω(λ,Ax,Ay), ω(λ,Bx,By)) ≥ 0

for all x, y ∈ X and for all λ > 0.
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If AX ⊆ BX and AX or BX is a complete subset of X. Then A and B have

unique coincidence point in X. Moreover if A and B are weakly compatible then A

and B have a unique common fixed point in X.

Theorem 3.5. Let Xω be a non-Archimedean modular metric space and let A,B :

X → X be two given mappings. Suppose there exists ζ ∈ Z and a function ϕ :

[0,∞) → [0,∞) such that

(3.3) ζ(ω(λ,Ax,Ay), ϕ(ω(λ,Bx,By)) ≥ 0

for all x, y ∈ X and for all λ > 0.

0 < ϕ(t) ≤ t for all t ∈ (0,∞) and ϕ(0) = 0

If AX ⊆ BX and AX or BX is a complete subset of X. Then A and B have

unique coincidence point in X. Moreover if A and B are weakly compatible then A

and B have a unique common fixed point in X.

The proof of Theorem 3.4 and Theorem 3.5 are established by applying Theorem

2.1 and Theorem 2.2. We give outline of the proof of Theorem 3.4.

Proof. Let M be a fuzzy metric induced by ω and defined by (3.1). It follows that

the triple (X,M, ∗) is non-Archimedean fuzzy metric space. Then by (3.2) we have

ζ(
1

M(Ax,Ay, λ)
−1,

1

M(Bx,By, λ)
−1) ≥ 0

for all x, y ∈ Xω and for all λ > 0.Therefore, we apply Theorem 3.1 to conclude that

A and B have a unique common fixed point in X.
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