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SOME SPECIAL CURVES IN THREE DIMENSIONAL

f-KENMOTSU MANIFOLDS

Pradip Majhi a, ∗ and Abhijit Biswas b

Abstract. In this paper we study Biharmonic curves, Legendre curves and Mag-
netic curves in three dimensional f -Kenmotsu manifolds. We also study 1-type
curves in a three dimensional f -Kenmotsu manifold by using the mean curvature
vector field of the curve. As a consequence we obtain for a biharmonic helix in a
three dimensional f -Kenmotsu manifold with the curvature κ and the torsion τ ,
κ2 + τ2 = −(f2 + f ′). Also we prove that if a 1-type non-geodesic biharmonic curve
γ is helix, then λ = −(f2 + f ′).

1. Introduction

In the study of f -Kenmotsu manifolds, Legendre curves on contact manifolds

have been studied by Baikoussis and Blair in the paper [2]. Belkhelfa et al. [3] have

investigated Legendre curves in Riemannian and Lorentzian manifolds.

In [7], Cabrerizo et al. have introduced a geometric approach to the study of mag-

netic fields on three dimensional Sasakian manifolds. A curve γ is called a magnetic

curve in three dimensional f -Kenmotsu manifolds if∇γ̇ γ̇ = ϕγ̇ [2]. A magnetic curve

is the trajectory of magnetic fields. Geodesics on a manifold are curves which do not

experience any kind of forces where the magnetic curves experience due to magnetic

fields. If the magnetic field disappears, its magnetic curve become a geodesic. In

this way a magnetic curve is a generalization of a geodesic.

Let M be a 3-dimensional Riemannian manifold. Let γ : I → M, I being an

interval, be a curve in M which is parameterized by arc length, and let ∇γ̇ denote
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the covariant derivative along γ with respect to the Levi-Civita connection on M .

It is said that γ is a Frenet curve if one of the following three cases hold:

• γ is of osculating order 1, i.e,∇tt = 0 (geodesic), t = γ̇. Here, · denotes
differentiation with respect to the arc length parameter.

• γ is of osculating order 2, i.e., there exist two orthonormal vector fields t(=

γ̇), n and a non-negative function κ (curvature) along γ such that ∇tt = κn,

∇tn = −κt.

• γ is of osculating order 3, i.e., there exist three orthonormal vectors t(= γ̇),

n, b and two non-negative functions κ(curvature) and τ(torsion) along γ

such that

∇tt = κn,(1.1)

∇tn = −κt+ τb,(1.2)

∇tb = −τn.(1.3)

With respect to the Levi-Civita connection, a Frenet curve of osculating order 3 for

which k is a positive constant and τ = 0 is called a circle in M ; a Frenet curve of

osculating order 3 is said to be a helix in M if κ and τ both are positive constants

and the curve is called a generalized helix if κ
τ is a constant.

2. Preliminaries

Let M be an (2n + 1)-dimensional connected differentiable manifold endowed

with an almost contact metric structure (ϕ, ξ, η, g) [4]. As usually denote by Φ the

fundamental 2-form of M , Φ(X,Y ) = g(X,ϕY ), for X, Y ∈ χ(M), χ(M) being

the Lie algebra of differentiable vector fields on M . For further use, we recall the

following definitions ([4], [5]). The manifold M and its structure (ϕ, ξ, η, g) is said

to be:

• normal if the almost complex structure defined on the product manifold M

×R is integrable (equivalently, [ϕ, ϕ] +2dη ⊗ ξ = 0),

• almost cosymplectic if dη = 0 and dΦ = 0,

• cosymplectic if it is normal and almost cosymplectic (equivalently, ∇ϕ = 0,

∇ being covariant differentiation with respect to the Levi-Civita connection).

The manifold M is said to be locally conformal cosymplectic (respectively, almost

cosymplectic) if M has an open covering Ut endowed with differentiable functions
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σt : Ut → R such that over each Ut the almost contact metric structure (ϕt, ξt, ηt, gt)

is defined by

(2.1) ϕt = ϕ, ξt = eσtξ, ηt = e−σtη, gt = e−2σtg

is cosymplectic (respectively, almost cosymplectic).

Osaka and Rosa [19] studied normal locally conformal almost cosymplectic manifold.

They gave a geometric interpretation of f -Kenmotsu manifolds and studied some

curvature properties. Among others Calin and Crasmareanu [10] proved that a Ricci

symmetric f -Kenmotsu manifold is an Einstein manifold.

By an f -Kenmotsu manifold we mean an almost contact metric manifold which is

normal and locally conformal almost cosymplectic.

Let M be a real (2n+1)-dimensional differentiable manifold endowed with an almost

contact structure (ϕ, ξ, η, g) satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,(2.2)

ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ),(2.3)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(2.4)

for any vector fields X, Y ∈ χ(M), where I is the identity of the tangent bundle

TM, ϕ is a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and g is a

metric tensor field. We say that (M,ϕ, ξ, η, g) is an f -Kenmotsu manifold if the

covariant differentiation of ϕ satisfies [20]:

(∇Xϕ)(Y ) = f{g(ϕX, Y )ξ − η(Y )ϕX},(2.5)

where f ∈ C∞(M) such that df ∧η = 0. If f = α = constant ̸= 0, then the manifold

is a α-Kenmotsu manifold. 1-Kenmotsu manifold is a Kenmotsu manifold ([16], [21]).

If f = 0, then the manifold is cosymplectic [20]. An f -Kenmotsu manifold is said to

be regular if f2 + f ′ ̸= 0, where f ′ = ξf , f ′ denotes covariant derivation of f with

respect to ξ.

For an f -Kenmotsu manifold from (2.2) it follows that

∇Xξ = f{X − η(X)ξ}.(2.6)

The condition df ∧ η = 0 holds if dim M ≥ 5. In general this does not hold if

dimM = 3 [21].
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In a three dimensional Riemannian manifold, we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r

2
g(Y, Z)X − g(X,Z)Y ,(2.7)

In a three dimensional f -Kenmotsu manifold, we have ([18], [21])

R(X,Y )Z = (
r

2
+ 2f2 + 2f ′)(g(Y, Z)X − g(X,Z)Y )

−(
r

2
+ 3f2 + 3f ′){η(X)(g(Y, Z)ξ − g(ξ, Z)Y )

+η(Y )(g(ξ, Z)X − g(X,Z)ξ)}.(2.8)

S(X,Y ) = (
r

2
+ 2f2 + 2f ′)g(Y, Z)X − (

r

2
+ 3f2 + 3f ′)η(X)η(Y ),(2.9)

where r is a scalar curvature of M and f ′ = ξf .

From (2.5), we obtain

R(X,Y )ξ = −(f2 + f ′)[η(Y )X − η(X)Y ],(2.10)

and (2.6) yields

S(X, ξ) = −(f2 + f ′)η(X).(2.11)

Proposition 2.1. Let γ be a unit speed curve on a three dimensional f -Kenmotsu

manifold and T , N and B be the tangent, principal normal and binormal of the

curve γ respectively. Then

η(T )′ = κη(N) + f(1− η(T )2),

η(N)′ = −κη(T ) + τη(B)− fη(T )η(N),

and

η(B)′ = −τη(N)− fη(T )η(B).

Proof. Let γ be a unit speed curve on a three dimensional f -Kenmotsu manifold.

Differentiating η(T ), η(N) and η(B) along γ, we have

η(T )′ = g(∇TT, ξ) + g(T,∇T ξ)

= κη(N) + g(T, f(T − η(T )ξ))

= κη(N) + f(1− η(T )2).(2.12)

η(N)′ = g(∇TN, ξ) + g(N,∇T ξ)

= g(−κT + τB, ξ) + g(N, f(T − η(T )ξ))

= −κη(T ) + τη(B)− fη(T )η(N).(2.13)
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η(B)′ = g(∇TB, ξ) + g(B,∇T ξ)

= g(−τN, ξ) + g(B, f(T − η(T )ξ))

= −τη(N)− fη(T )η(B).(2.14)

This completes the proof. �

A Frenet curve is called a slant curve if it makes a constant angle with the Reeb

vector field ξ [9]. If a unit speed curve on an almost contact metric manifold is

slant curve, then η(γ̇) = cos θ, where θ is a constant and is called slant angle. In

particular, if the angle is π
2 , the curve becomes almost contact curve or Legendre

curve. A slant curve is called proper if it is neither parallel nor perpendicular to the

Reeb vector ξ.

Remark 2.2. For a curve γ in a three dimensional f -Kenmotsu manifold, the

following conditions are equivalent

(i) the curve γ is slant curve,

(ii) η(T )′ = 0,

(iii) η(N) = −f
κ(1− η(T )2).

Remark 2.3. If a curve γ is Legendre in a three dimensional f -Kenmotsu manifold,

then from the (2.12), we have

η(N) = −f

κ
.(2.15)

3. Biharmonic Curves in Three Dimensional f-Kenmotsu
Manifolds

The theory of biharmonic functions is a rich subject. Biharmonic functions have

been studied by Maxwell in 1862 and Airy to describe a mathematical model of

elasticity. The theory of polyharmonic functions was developed later on. There are

a few results on biharmonic curves in arbitrary Riemannian manifolds. Biharmonic

curves on a surface was studied by R. Caddeo, et al. in the paper [8]. Later, in [17] S.

Montaldo and C. Oniciuc studied biharmonic maps between Riemannian manifolds.

In the paper [12] D. Fetcu studied Biharmonic Legendre curves in Sasakian space

forms. Certain biharmonic curves on different manifolds have been studied by several

authors such as ([6], [13]).
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Definition 3.1. A helix γ is said to be biharmonic with respect to the Levi-Civita

connection ∇ if it satisfies [13]

∇3
TT +R(∇TT, T )T = 0,

where γ̇ = T , and R is the curvature tensor of type (1, 3).

Theorem 3.2. Let γ be a biharmonic helix in a three dimensional f -Kenmotsu

manifold with the curvature κ and the torsion τ . Then κ2 + τ2 = −(f2 + f ′).

Proof. Let γ be a biharmonic helix in a three dimensional f -Kenmotsu manifold.

Then

∇3
TT +R(∇TT, T )T = 0,(3.1)

where γ̇ = T , tangent vector and the curvature κ and torsion τ are constant.

Let N and B be principal normal and binormal respectively. Then the Frenet-Serret

equations are

∇TT = κN,(3.2)

∇TN = −κT + τB,(3.3)

and

∇TB = −τN.(3.4)

Differentiating (3.2) with respect to T , we have

∇2
TT = ∇T (κN)

= κ∇TN

= κ(−κT + τB)

= −κ2T + κτB.(3.5)

Again differentiating the foregoing with respect to T , we get

∇3
TT = ∇T (−κ2T + κτB)

= −κ2(κN) + κτ(−τN)

= −κ3N − κτ2N.(3.6)
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Now

R(∇TT, T )T = (
r

2
+ 2f2 + 2f ′){g(T, T )∇TT − g(∇TT, T )T}

−(
r

2
+ 3f2 + 3f ′){η(∇TT )(g(T, T )ξ − g(ξ, T )T )

+η(T )(g(ξ, T )∇TT − g(∇TT, T )ξ)}

= (
r

2
+ 2f2 + 2f ′){κN − 0} − (

r

2
+ 3f2 + 3f ′)

{κη(N)(ξ − η(T )T ) + η(T )(η(T )κN − 0)}

= (
r

2
+ 2f2 + 2f ′)κN − (

r

2
+ 3f2 + 3f ′)(κη(N)ξ

−κη(N)η(T )T + η(T )2κN).(3.7)

Since the curve is biharmonic helix. Then using (3.6) and (3.7) in (3.1), we obtain

−κ3N − κτ2N + (
r

2
+ 2f2 + 2f ′)κN

−(
r

2
+ 3f2 + 3f ′)(κη(N)ξ − κη(N)η(T )T + η(T )2κN) = 0.(3.8)

Taking inner product in (3.8) with ξ, we get

−κ(κ2 + τ2)η(N) + (
r

2
+ 2f2 + 2f ′)κη(N)

−(
r

2
+ 3f2 + 3f ′)(κη(N)− κη(N)η(T )2 + κη(T )2η(N)) = 0.(3.9)

This implies

−κ(κ2 + τ2)η(N)− (f2 + f ′)κη(N) = 0.(3.10)

Since κ and η(N) are non-zero, we have

κ2 + τ2 = −(f2 + f ′).(3.11)

This completes the proof. �

Definition 3.3. A curve γ is called a curve with proper mean curvature vector field

H if there exist λ ∈ Ck(γ) such that

∆H = λH.

The curve γ is also called 1- type.

In particular, if λ = 0 then γ is known as a curve with the harmonic mean

curvature vector field [14]. Hence the Laplace operator ∆ acts on the vector valued

function H and it is given by

∆H = −∇T∇T∇TT.
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Making use of Frenet equations, we get

−3κκ̇T + (κ̈− κ3 − κτ2)N + (2κ̇τ + κτ̇)B = −λκN.(3.12)

If both κ and τ are constants, then

λ = κ2 + τ2.(3.13)

For more details see ([1], [14] and [15]).

Theorem 3.4. If a 1-type non-geodesic biharmonic curve γ is helix, then λ =

−(f2 + f ′).

Proof. Let γ be a biharmonic helix. Then κ and τ are constants. From (3.11), we

have

κ2 + τ2 = −(f2 + f ′).(3.14)

Also for a 1-type non-geodesic curve, we have from (3.13)

λ = κ2 + τ2.(3.15)

Comparing the equations (3.14) and (3.15), we obtain

λ = −(f2 + f ′).(3.16)

This completes the proof of the theorem. �

4. Legendre Curves in Three Dimensional f-Kenmotsu Manifolds

A Frenet curve γ in a Riemannian manifold is said to be a Legendre curve if it

is an integral curve of the contact distribution D = kerη, i.e., if η(γ̇) = 0. Legendre

curves have been studied by ([22], [23]). For more details we refer ([2], [3]).

Proposition 4.1. Let M be a three dimensional f -Kenmotsu manifold. If a Le-

gendre curve γ : I → M is not geodesic, then it’s curvature and torsion are given

by

κ =
√
f2 + δ2,

and

τ =
f δ̇ − δḟ

κ2
,

where δ is a function on I.
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Proof. Let γ be a Legendre curve on a 3-dimensional f -Kenmotsu manifold. Note

that γ̇, ϕγ̇ and ξ are orthonormal vector fields along γ. Differentiating g(γ̇, ξ) = 0

along γ, we get

g(∇γ̇ γ̇, ξ) + g(f(γ̇ − η(γ̇)ξ), γ̇) = 0.(4.1)

It follows that

g(∇γ̇ γ̇, ξ) + f = 0,(4.2)

and hence

g(∇γ̇ γ̇, ξ) = −f.(4.3)

Therefore

∇γ̇E1 = ∇γ̇ γ̇ = −fξ + δϕγ̇,(4.4)

where δ is certain function on I. Hence the curvature κ of the curve γ is given by

κ =
√
f2 + δ2.(4.5)

Differentiating the following vector field E2

E2 =
1

κ
∇γ̇E1 = −f

κ
ξ +

δ

κ
ϕγ̇(4.6)

along γ, we obtain

∇γ̇E2 = −κḟ − fκ̇

κ2
ξ − f

k
∇γ̇ξ +

κδ̇ − δκ̇

κ2
ϕγ̇ +

δ

κ
∇γ̇(ϕγ̇)

= −κḟ − fκ̇

κ2
ξ − f2

k
γ̇ +

κδ̇ − δκ̇

κ2
ϕγ̇ +

δ

κ
(−δγ̇)

= −f2 + δ2

κ
γ̇ − κḟ − fκ̇

κ2
ξ +

κδ̇ − δκ̇

κ2
ϕγ̇.(4.7)

Again

κḟ − fκ̇

κ2
=

δ

κ

δḟ − f δ̇

κ2
(4.8)

and

κδ̇ − δκ̇

κ2
=

f

κ

fδ̇ − δḟ

κ2
.(4.9)

Thus using (4.8), (4.9) in (4.7), we have

∇γ̇E2 = −κγ̇ +
δa

κ
ξ +

fa

κ
ϕγ̇,(4.10)
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where a = fδ̇−δḟ
κ2 . Therefore from (4.10), we get

τE3 = ∇γ̇E2 + κE1

=
δa

κ
ξ +

fa

κ
ϕγ̇.(4.11)

Hence from the foregoing equation it follows that

τ =

√
(
δa

κ
)2 + (

fa

κ
)2

= a =
f δ̇ − δḟ

κ2
.(4.12)

This completes the proof. �

The curvature measures the extent to which a curve is not contained in a straight

line so that straight lines have zero curvature, and the torsion measures the extent

to which a curve is not contained in a plane so that plane curves have zero torsion

[11]. Thus for a plane curve torsion τ = 0.

Theorem 4.2. Let γ be a Legendre curve on a three dimensional f -Kenmotsu man-

ifold. If the unit vector ξ is parallel to principal normal vector N or binormal vector

B. Then the manifold is cosymplectic and the curve is plane curve.

Proof. Let γ be a Legendre curve on a three dimensional f -Kenmotsu manifold. If

ξ is along binormal vector B. Then {γ̇, ϕγ̇, ξ} are orthonormal vector field along γ

and

T = γ̇, N = ϕγ̇, B = ξ.

Let κ and τ be the curvature and torsion of the curve γ. Then

∇γ̇ γ̇ = κϕγ̇,(4.13)

∇γ̇ϕγ̇ = −κγ̇ + τξ.(4.14)

and

∇γ̇ξ = −τϕγ̇.(4.15)

Also

∇γ̇ϕγ̇ = (∇γ̇ϕ)γ̇ + ϕ(∇γ̇ γ̇)

= f(g(ϕγ̇, γ̇)− η(γ̇)ξ) + κϕ2γ̇

= 0 + κ(−γ̇ + η(γ̇)ξ)

= −κγ̇.(4.16)
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and

∇γ̇ξ = f(γ̇ − η(γ̇)ξ)

= fγ̇.(4.17)

Then comparing the equations (4.14), (4.15) with (4.16), (4.17) respectively, we get

τ = 0,(4.18)

and

f = 0.(4.19)

If ξ is along principal normal vector N , then the proof is same as above. This

completes the proof Theorem. �

Theorem 4.3. A Legendre curve in three dimensional f -Kenmotsu manifold is of

1-type with λ = κ2ḟ−f̈
f , where γf = ḟ .

Proof. Let γ be a Legendre curve in a three dimensional f -Kenmotsu manifold.

Then η(γ̇) = 0, where tangent T = γ̇. Differentiating η(γ̇) = 0 with respect to γ̇, we

get

g(∇γ̇ γ̇, ξ) + g(γ̇,∇γ̇ξ) = 0.(4.20)

From which it follows that

g(∇γ̇ γ̇, ξ) = −f.(4.21)

Differentiating again with respect to γ̇, we have

g(∇2
γ̇ γ̇, ξ) + g(∇γ̇ γ̇,∇γ̇ξ) = −ḟ .(4.22)

This implies

g(∇2
γ̇ γ̇, ξ) = −ḟ .(4.23)

Differentiating the foregoing equation along γ , we obtain

g(∇3
γ̇ γ̇, ξ) + g(∇2

γ̇ γ̇,∇γ̇ξ) = −f̈ .(4.24)

It follows that

g(∇3
γ̇ γ̇, ξ) + g(κ∇γ̇N + κ̇N, f γ̇) = −f̈ ,(4.25)

and hence

g(∇3
γ̇ γ̇, ξ) = κ2f − f̈ .(4.26)
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If γ is a 1-type curve with λ ∈ Ck. Then ∇3
γ̇ γ̇ = −λκN. Then from (4.26), we get

λ = −κ2ḟ − f̈

κη(N)
.(4.27)

Using (2.15) in (4.27), we have

λ =
κ2ḟ − f̈

f
.(4.28)

This completes the proof. �

Theorem 4.4. If γ is a magnetic helix in three dimensional f -Kenmotsu manifolds,

then η(N) = 0 and η(T )
η(B) =

τ
κ .

Proof. Let γ be a magnetic helix curve in a three dimensional f -Kenmotsu manifold.

Then

∇γ̇ γ̇ = ϕγ̇,(4.29)

where γ̇ = T (tangent vector). Using Frenet formula, we have

κN = ϕT.(4.30)

Taking inner product of (4.30) with ξ, we get

η(N) = 0.(4.31)

Differentiating (4.29) with respect to T , we have

∇2
TT = ∇T (ϕT ).(4.32)

It follows that

∇T (κN) = η(T )(ξ − fϕT )− T.(4.33)

This implies

−κ2T + κτB = η(T )(ξ − fϕT )− T.(4.34)

Taking inner product of (4.34) with ξ, we obtain

−κ2η(T ) + κτη(B) = η(T )− η(T ).(4.35)

Therefore

η(T )

η(B)
=

τ

κ
.(4.36)

This completes the proof. �
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Theorem 4.5. Any magnetic helix curve on three dimensional f -Kenmotsu mani-

folds is of 1-type and

λ = κ2
η(T )2 + η(B)2

η(B)2
= τ2

η(T )2 + η(B)2

η(T )2
.(4.37)

Proof. Let γ be a magnetic helix on a three dimensional f -Kenmotsu manifold.

From (4.36), we get

κ2

η(B)2
=

τ2

η(T )2
=

κ2 + τ2

η(T )2 + η(B)2
.(4.38)

If γ is a 1-type curve, then there exists λ ∈ C∞(γ) such that κ2 + τ2 = λ. Then

from (4.38), we get

λ = κ2
η(T )2 + η(B)2

η(B)2
= τ2

η(T )2 + η(B)2

η(T )2
.(4.39)

This completes the proof of the theorem. �
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