DOI QR코드

DOI QR Code

전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting

  • 유지선 (고려대학교 신소재화학과) ;
  • 차은희 (고려대학교 신소재화학과) ;
  • 박정희 (고려대학교 신소재화학과) ;
  • 임수아 (호서대학교 제약공학과)
  • Yoo, Jisun (Department of Chemistry, Korea University) ;
  • Cha, Eunhee (Department of Chemistry, Korea University) ;
  • Park, Jeunghee (Department of Chemistry, Korea University) ;
  • Lim, Soo A (Dept. of pharmaceutical engineering, Hoseo University)
  • 투고 : 2020.02.12
  • 심사 : 2020.03.30
  • 발행 : 2020.05.31

초록

태양광 흡수 물분해는 화석연료 대체 에너지원으로 떠오르는 수소에너지를 생산할 수 있는 가장 유망한 방법이다. 현재 전이 금속 디칼코제나이드 (transition dichalcogenide, TMD)는 물분해 촉매 특성이 뛰어난 물질로 많은 관심을 끌고 있다. 본 연구에서는 실리콘 (Si) 나노선 어레이 전극 표면에 대표적 TMD 물질인 4-6족의 이황화 몰리브덴 (MoS2), 이셀렌화 몰리브덴(MoSe2), 이황화 텅스텐 (WS2), 이셀렌화 텅스텐 (WSe2) 나노시트 합성할 수 있는 방법을 개발하였다. Si나노선 전극을 금속 이온 용액으로 코팅하고, 황 또는 셀레늄의 화학 기상 증착법(chemical vapor deposition)을 이용하는 것이다. 이 방법으로 TMD 나노시트를 약 20 nm 두께로 균일하게 합성하였다. p형 Si-TMD 나노선 광전극으로 구성된 광화학전지는 태양광 AM1.5G, 0.5 M H2SO4 전해질에서 개시 전위 0.2 V를 가지며 0 V (vs. RHE)에서 20 mA cm-2 이상의 전류를 낼 수 있다. 수소 발생 양자효율은 90% 정도로 우수한 물분해 촉매 특성을 확인하였다. MoS2 및 MoSe2는 3시간 동안 90% 이상의 우수한 광전류 안전성을 보여주었으나, WS2 및 WSe2는 상대적으로 적은 80%였다. MoS2, MoSe2는 Si 나노선 표면에 균일한 시트 형태로 씌워졌지만, WS2, WSe2는 조각 형태로 붙었다. 따라서 Si 표면을 잘 보호하지 못하기 때문에 Si나노선이 더 잘 산화되어 안정성이 낮아지는 것으로 해석하였다. 본 연구결과는 TMD의 수소 발생 촉매 특성을 이해하는 데 크게 기여할 것으로 예상한다.

Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

키워드

참고문헌

  1. A. Fujishima, and K. Honda, 'Electrochemical Photolysis of Water at a Semiconductor Electrode', Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  2. R. N. Dominey, N. S. Lewis, J. M. Bruce, D. C. Bookbinder, and M. S. Wrighton, 'Improvement of Photoelectrochemical Hydrogen Generation by Surface Modification of p-Type Silicon Semiconductor Photocathodes', J. Am. Chem. Soc., 104, 467-482 (1982). https://doi.org/10.1021/ja00366a016
  3. O. Khaselev, and J. A. Turner, 'Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting', Science, 280, 425-427 (1998). https://doi.org/10.1126/science.280.5362.425
  4. W. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, 'Solar Water Splitting Cells', Chem. Rev., 110, 6446-6473 (2010). https://doi.org/10.1021/cr1002326
  5. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, 'Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction', Nat. Mater., 10, 456-461 (2011). https://doi.org/10.1038/nmat3017
  6. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, and I. Chorkendorff, 'Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution', Nat. Mater., 10, 434-438 (2011). https://doi.org/10.1038/nmat3008
  7. Y. W. Chen, J. D. Prange, S. Duhnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, 'Atomic Layerdeposited Tunnel Oxide Stabilizes Silicon Photoanodes for Water Oxidation', Nat. Mater., 10, 539-544 (2011). https://doi.org/10.1038/nmat3047
  8. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, 'Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts', Science, 334, 645-648 (2011). https://doi.org/10.1126/science.1209816
  9. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, 'High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation', Science, 342, 836-840 (2013). https://doi.org/10.1126/science.1241327
  10. K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, 'Enabling Silicon for Solar-Fuel Production', Chem. Rev., 114, 8662-8719 (2014). https://doi.org/10.1021/cr300459q
  11. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, 'A Silicon-Based Photocathode for Water Reduction with an Epitaxial $SrTiO_3$ Protection Layer and a Nanostructured Catalyst', Nat. Nanotech., 10, 84-90 (2015). https://doi.org/10.1038/nnano.2014.277
  12. J. C. Hill, A. T. Landers, and J. A. Switzer, 'An Electrodeposited Inhomogeneous Metal-Insulator-Semiconductor Junction for Efficient Photoelectrochemical Water Oxidation', Nat. Nanotech., 14, 1150-1155 (2015). https://doi.org/10.1038/s41565-019-0568-x
  13. Z. Huang, C. Wang, L. Pan, F. Tian, X. Zhang, and C. Zhang, 'Enhanced Photoelectrochemical Hydrogen Production Using Silicon Nanowires@$MoS_3$', Nano Energy, 2, 1337-1346 (2013). https://doi.org/10.1016/j.nanoen.2013.06.016
  14. J. Y. Jung, M. J. Choi, K. Zhou, X. Li, S. W. Jee, H. D. Um, M. J. Park, K. T. Park, J. H. Bang and J. H. Lee, 'Photoelectrochemical Water Splitting Employing a Tapered Silicon Nanohole Array', J. Mater. Chem. A, 2, 833-842 (2014). https://doi.org/10.1039/C3TA14439A
  15. C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. K. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, 'Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction $n^+$p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to $H_2$(g)', J. Phys. Chem. Lett., 6, 1679-1683 (2015). https://doi.org/10.1021/acs.jpclett.5b00495
  16. M. Basu, Z. W. Zhang, C. J. Chen, P. T. Chen, K. C. Yang, C. G. Ma, C. C. Lin, S. F. Hu, and R. S. Liu, 'Heterostructure of Si and $CoSe_2$: A Promising Photocathode Based on a Non-Noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution', Angew. Chem. Int. Ed., 54, 6211-6216 (2015). https://doi.org/10.1002/anie.201502573
  17. C. Lv, Z. Chen, Z. Chen, B. Zhang, Y. Qin, Z. Huang, and C. Zhang, 'Silicon Nanowires Loaded with Iron Phosphide for Effective Solar-Driven Hydrogen Production', J. Mater. Chem. A, 3, 17669-17675 (2015). https://doi.org/10.1039/C5TA03438H
  18. Q. Ding, J. Zhai, M. Caban-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. A. Jin, 'Designing Efficient Solar-Driven Hydrogen Evolution Photocathodes Using Semitransparent $MoQ_xCl_y$ (Q = S, Se) Catalysts on Si Micropyramids', Adv. Mater., 27, 6511-6518 (2015). https://doi.org/10.1002/adma.201501884
  19. H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. A. Jin, 'A p-Si/$NiCoSe_x$ Core/Shell Nanopillar Array Photocathode for Enhanced Photoelectrochemical Hydrogen Production', Energy Environ. Sci., 9, 3113-3119 (2016). https://doi.org/10.1039/C6EE02215D
  20. D. Liu, J. Ma, R. Long, C. Gao, and Y. Xiong, 'Silicon Nanostructures for Solar-Driven Catalytic Applications', Nano Today, 17, 96-116 (2017). https://doi.org/10.1016/j.nantod.2017.10.013
  21. C. J. Chen, K. C. Yang, C. W. Liu, Y. R. Lu, C. L. Dong, D. H. Wei, S. F. Hu, and R. S. Liu, 'Silicon Microwire Arrays Decorated with Amorphous Heterometal-Doped Molybdenum Sulfide for Water Photoelectrolysis', Nano Energy, 32, 422-432 (2017). https://doi.org/10.1016/j.nanoen.2016.12.045
  22. W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, 'Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions', ACS Energy Lett., 3, 1086-1092 (2018). https://doi.org/10.1021/acsenergylett.8b00267
  23. S. Lee, S. Cha, Y. Myung, K. Park, I. H. Kwak, I. S. Kwon, J. Seo, S. A. Lim, E. H. Cha, and J. Park, 'Orthorhombic $NiSe_2$ Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting', ACS Appl. Mater. Interfaces, 10, 33196-33204 (2018).
  24. D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nözel, G. Zhou, Z. Zhang, and J. Liu, 'One-step Chemical Vapor Deposition of $MoS_2$ Nanosheets on SiNWs as Photocathodes for Efficient and Stable Solar-Driven Hydrogen Production', Nanoscale, 10, 3518-3525 (2018). https://doi.org/10.1039/C7NR09235K
  25. X. Sun, J. Jiang, Y. Yang, Y. Shan, L. Gong, and M. Wang, 'Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and $TiO_2$', ACS Appl. Mater. Interfaces, 11, 19132-19140 (2019). https://doi.org/10.1021/acsami.9b03757
  26. P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', Chem. Eur. J., 18, 13994-13999 (2012). https://doi.org/10.1002/chem.201202214
  27. Q. Ding, F. Meng, C. R. English, M. C. Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', J. Am. Chem. Soc., 136, 8504-8507 (2014). https://doi.org/10.1021/ja5025673
  28. L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', Nano Res., 8, 281-287 (2015). https://doi.org/10.1007/s12274-014-0673-y
  29. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y. S. Shim, D. H. Kim, T. Kim, W. Sohn, J. M. Jeon, C. H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, 'Wafer-scale Transferable Molybdenum Disulfide Thin-film Catalysts for Photoelectrochemical Hydrogen Production', Energy Environ. Sci., 9, 2240-2248 (2016). https://doi.org/10.1039/C6EE00144K
  30. S. Oh, J. B. Kim, J. T. Song, J. Oh, and S. H. Kim, 'Atomic Layer Deposited Molybdenum Disulfide on Si Photocathodes for Highly Efficient Photoelectrochemical Water Reduction Reaction', J. Mater. Chem. A, 5, 3304-3310 (2017). https://doi.org/10.1039/C6TA10707A
  31. L. A. King, T. R. Hellstern, J. Park, R. Sinclair, and T. F. Jaramillo, 'Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting', ACS Appl. Mater. Interfaces, 9, 36792-36798 (2017). https://doi.org/10.1021/acsami.7b10749
  32. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, 'Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-$MoS_2$ Films for Solar Hydrogen Production', ACS Appl. Mater. Interfaces, 9, 6123-6129 (2017). https://doi.org/10.1021/acsami.6b15854
  33. Yi. Hou, Z. Zhu, Y. Xu, F. Guo, J. Zhang, and X. Wang, 'Efficient Photoelectrochemical Hydrogen Production Over p-Si Nanowire Arrays Coupled with Molybdenume-Sulfur Clusters', J. Hydrog. Energy, 42, 2832-2838 (2017). https://doi.org/10.1016/j.ijhydene.2016.09.106
  34. D. M. Andoshe, G. Jin, C. S. Lee, C. Kim, K. C. Kwon, S. Choi, W. Sohn, C. W. Moon, S. H. Lee, J. M. Suh, S. Kang, J. Park, H. Heo, J. K. Kim, S. Han, M. H. Jo, and H. W. Jang, 'Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction', Adv. Sustainable Syst., 2, 1700142 (2018). https://doi.org/10.1002/adsu.201700142
  35. Q. Zhou, S. Su, D. Hu, L. Lin, Z. Yan, X. Gao, Z. Zhang, and J. M. Liu, 'Ultrathin $MoS_2$-coated Ag@Si Nanosphere Arrays as an Efficient and Stable Photocathode for Solar-driven Hydrogen Production', Nanotechnology, 29, 105402 (2018). https://doi.org/10.1088/1361-6528/aaa48c
  36. J. Joe, C. Bae, E. Kim, T. A. Ho, H. Yang, J. H. Park, and H. Shin, 'Mixed-Phase (2H and 1T) $MoS_2$ Catalyst for a Highly Efficient and Stable Si Photocathode', Catalysts, 8, 580 (2018). https://doi.org/10.3390/catal8120580
  37. M. Alqahtani, S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara, Y. I. Mazur, G. J. Salamo, I. P. Parkin, H. Liua, and J. Wu, 'Heteroepitaxy of GaP on Silicon for Efficient and Costeffective Photoelectrochemical Water Splitting', J. Mater. Chem. A, 7, 8550-8558 (2019). https://doi.org/10.1039/C9TA01328H
  38. R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, 'Efficient n+p-Si Photocathodes for Solar H2 Production Catalyzed by Co-W-S and Stabilized by Ti Buffer Layer', Appl. Catal. B, 237, 158-165 (2018). https://doi.org/10.1016/j.apcatb.2018.05.083
  39. G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, 'Integrated MoSe2 with n+p-Si Photocathodes for Solar Water Splitting with High Efficiency and Stability', Appl. Phys. Lett., 112, 013902 (2018). https://doi.org/10.1063/1.5012110
  40. A. Hasani, Q. V. Le, M. Tekalgne, M. J. Choi, T. H. Lee, S. H. Ahn, H. W. Jang, and S. Y. Kim, 'Fabrication of a WS2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis', ACS Appl. Mater. Interfaces, 11, 29910-29916 (2019). https://doi.org/10.1021/acsami.9b08654
  41. I. H. Kwak, I. S. Kwon, H. G. Abbas, J. Seo, G. Jung, Y. Lee, D. Kim, J. -P. Ahn, J. Park, and H. S. Kang, 'Intercalated Complexes of 1T'-$MoS_2$ Nanosheets with Alkylated Phenylenediamines as Excellent Catalysts for Electrochemical Hydrogen Evolution', J. Mater. Chem. A, 7, 2334-2343 (2019). https://doi.org/10.1039/C8TA11085A
  42. J. He, K. Hummer, and C. Franchini, 'Stacking Effects on the Electronic and Optical Properties of Bilayer Transition Metal Dichalcogenides $MoS_2,\;MoSe_2,\;WS_2,\;and\;WSe_2$', Phys. Rev. B, 89, 075409 (2014). https://doi.org/10.1103/PhysRevB.89.075409
  43. F. Zeng, Z. W. -B. Zhang, Tang B. -Y. Tang, 'Electronic Structures and Elastic Properties of Monolayer and Bilayer Transition Metal Dichalcogenides $MX_2$ (M = Mo, W; X = O, S, Se, Te): A Comparative First-Principles Study', Chin. Phys. B, 24, 097103 (2015). https://doi.org/10.1088/1674-1056/24/9/097103