DOI QR코드

DOI QR Code

CNT 연속섬유의 전기전도성과 기계적 성질에 미치는 산처리 효과

Effect of Acid Treatment on the Electrical Conductivity and Mechanical Properties of Carbon Nanotube Continuous Fibers

  • 이일재 (충남대학교 유기소재.섬유시스템공학과) ;
  • 김경은 (충남대학교 유기소재.섬유시스템공학과) ;
  • 구수현 (충남대학교 유기소재.섬유시스템공학과) ;
  • 김지현 (충남대학교 유기소재.섬유시스템공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Lee, Il Jae (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Kim, Kyung Eun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Koo, Su Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Kim, Ji Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 투고 : 2019.11.22
  • 심사 : 2020.02.12
  • 발행 : 2020.02.29

초록

Carbon nanotubes (CNTs) have been studied to fabricate continuous fibers or for assembly in various applications. However, the properties of CNT continuous fibers are not as advantageous as those of CNTs. In this study, CNT fibers produced by continuous spinning were subjected to acid treatment to improve the electrical conductivity and mechanical properties of the fibers. The CNT fibers were dipped into an acid mixture composed of sulfuric acid and nitric acid. The microstructures of the acid-treated CNT fibers were observed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was performed to confirm the surface functionalization of the acid-treated CNT fibers. The electrical conductivities of the acid-treated CNT fibers were determined by a 4-point probe method. The mechanical properties of the acid-treated CNT fibers were analyzed by a universal testing machine (UTM). The electrical conductivity of the acid-treated CNT fibers increased by 6.8 times and the tensile strength increased by 41% compared to the original CNT fibers.

키워드

과제정보

본 연구는 산업통상자원부 산업소재핵심기술개발사업(과제번호 10052838, 주관기관 숭실대학교 산학협력단)의 연구비 지원 하에 연구되었으며, 당 기관의 연구비 지원에 감사드립니다.

참고문헌

  1. F. L. Jin, C. J. Ma, and S. J. Park, "Thermal and Mechanical Interfacial Properties of Epoxy Composites Based on Functionalized Carbon Nanotubes", Mater. Sci. Eng. A, Struct. Mater., 2011, 528, 8517-8522. https://doi.org/10.1016/j.msea.2011.08.054
  2. C. Peng, S. Zhang, D. Jewell, and G. Z. Chen, "Carbon Nanotube and Conducting Polymer Composites for Supercapacitors", Prog. Nat. Sci., 2008, 18, 777-788. https://doi.org/10.1016/j.pnsc.2008.03.002
  3. B. Mathieu, C. Anthony, A. Arnaud, and F. Lionel, "CNT Aggregation Mechanisms Probed by Electrical and Dielectric Measurements", J. Mater. Chem. C, 2015, 3, 5769-5774. https://doi.org/10.1039/C5TC00692A
  4. J. Xu and T. S. Fisher, "Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays", Int. J. Heat Mass Transf., 2006, 49, 1658-1666. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.039
  5. Y. Wei, K. Jiang, L. Liu, Z. Chen, and S. Fan, "Vacuum-breakdown-induced Needle-shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications", Nano Letters, 2007, 7, 3792-3797. https://doi.org/10.1021/nl072298y
  6. https://www.miralon.com/yarn (accessed February 10, 2020).
  7. Y. L. Li, I. A. Kinloch, and A. H. Windle, "Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis", Science, 2004, 304, 276-278. https://doi.org/10.1126/science.1094982
  8. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, "Direct Synthesis of Long Single-Walled Carbon Nanotube Strands", Science, 2002, 296, 884-886. https://doi.org/10.1126/science.1066996
  9. M. Zhang, K. R. Atkinson, and R. H. Baughman, "Multi-functional Carbon Nanotube Yarns by Downsizing an Ancient Technology", Science, 2004, 306, 1358-1361. https://doi.org/10.1126/science.1104276
  10. J. Y. Song, S. R. Yoon, S. Y. Kim, D. H. Cho, and Y. J. Jeong, "Effects of Surfactant on Carbon Nanotube Assembly Synthesized by Direct Spinning", Chem. Eng. Sci., 2013, 104, 25-31. https://doi.org/10.1016/j.ces.2013.09.008
  11. K. Park, Y. Jeong, D. H. Baik, and G. W. Lee, "Development of Multi-Functional Continuous CNT Fibers", Polym. Sci. Technol., 2010, 21, 167-174.
  12. G. Tobias, L. Shao, C. G. Salzmann, Y. Huh, and M. L. H. Green, "Purification and Opening of Carbon Nanotubes Using Steam", J. Phys. Chem. B., 2006, 110, 22318-22322. https://doi.org/10.1021/jp0631883
  13. J. Qiu, J. Terrones, J. J. Vilatela, M. E. Vickers, J. A. Elliott, and A. H. Windle, "Liquid Infiltration into Carbon Nanotube Fibers: Effect on Structure and Electrical Properties", ACS Nano, 2013, 7, 8412-8422. https://doi.org/10.1021/nn401337m
  14. M. Miao, "The Role of Twist in Dry Spun Carbon Nanotube Yarns", Carbon, 2016, 96, 819-826. https://doi.org/10.1016/j.carbon.2015.10.022
  15. I. J. Lee, K. E. Kim, H. S. Ma, and D. H. Baik, "Preparation of Carbon Nanotube Fiber/Conductive Materials Composites and Their Electrical Properties", Text. Sci. Eng., 2019, 56, 35-40. https://doi.org/10.12772/TSE.2019.56.035
  16. E. R. Edwards, E. F. Antunes, E. C. Botelho, M. R. Baldan, and E. J. Cora, "Evaluation of Residual Iron in Carbon Nanotubes Purified by Acid Treatments", Appl. Surf. Sci., 2011, 258, 641-648. https://doi.org/10.1016/j.apsusc.2011.07.032
  17. F. Aviles, J. V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, "Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization", Carbon, 2009, 47, 2970-2975. https://doi.org/10.1016/j.carbon.2009.06.044
  18. T. Q. Tran, R. J. Headrick, E. A. Bengio, S. M. Myint, H. Khoshnevis, V. Jamali, H. M. Duong, and M. Pasquali, "Purification and Dissolution of Carbon Nanotube Fibers Spun from the Floating Catalyst Method", ACS Appl. Mater. Interfaces, 2017, 9, 37112-37119. https://doi.org/10.1021/acsami.7b09287
  19. S. J. Sung, T. Kim, S. J. Yang, J. Y. Oh, and C. R. Park, "New Insights into the Oxidation of Single-walled Carbon Nanotubes for the Fabrication of Transparent Conductive Films", Carbon, 2015, 81, 525-534. https://doi.org/10.1016/j.carbon.2014.09.085
  20. J. Lee, D. M. Lee, Y. Jung, J. Park, H. S. Lee, Y. K. Kim, and C. R. Park, "Direct Spinning and Densification Method for High-performance Carbon Nanotube Fibers", Nat. Commun., 2019, 10, 1-10. https://doi.org/10.1038/s41467-018-07882-8
  21. Y. O. Im, S. H. Lee, T. Kim, J. Park, J. Lee, and K. H. Lee, "Utilization of Carboxylic Functional Groups Generated During Purification of Carbon Nanotube Fiber for Its Strength Improvement", Appl. Surf. Sci., 2017, 392, 342-349. https://doi.org/10.1016/j.apsusc.2016.09.060
  22. C. Lu and H. Chiu, "Adsorption of Zinc(II) from Water with Purified Carbon Nanotubes", Chem. Eng. Sci., 2006, 61, 1138-1145. https://doi.org/10.1016/j.ces.2005.08.007
  23. C. Lu, F. Su, and S. Hu, "Surface Modification of Carbon Nanotubes for Enhancing BTEX Adsorption from Aqueous Solutions", Appl. Surf. Sci., 2008, 254, 7035-7041. https://doi.org/10.1016/j.apsusc.2008.05.282
  24. H. E. Misak, R. Asmatulu, M. O'Malley, E. Jurak, and S. Mall, "Functionalization of Carbon Nanotube Yarn by Acid Treatment", Int. J. Smart Nano Mater., 2014, 5, 34-43. https://doi.org/10.1080/19475411.2014.896426