DOI QR코드

DOI QR Code

Preparation and Filtration Properties of a Nanofiber-based Composite Yarn String-wound Cartridge

나노섬유 복합 장섬유사 제조 및 섬유사 카트리지 필터 특성

  • 이승훈 ((주)아모그린텍 신소재 연구소) ;
  • 장선호 ((주)아모그린텍 신소재 연구소) ;
  • 소윤미 ((주)아모그린텍 신소재 연구소) ;
  • 류중재 (ECO 융합섬유연구원) ;
  • 임지혜 (ECO 융합섬유연구원) ;
  • 김의화 (신한대학교 섬유소재공학과) ;
  • 심현주 (숭실대학교 유기신소재파이버공학과) ;
  • 김찬 ((주)아모그린텍 신소재 연구소)
  • Received : 2020.01.13
  • Accepted : 2020.02.04
  • Published : 2020.02.29

Abstract

Electro-spun PVDF nanofibers and PE/PP thermal-bond nonwovens were composited to obtain nanofiber-based yarns using a slitting and twisting technique. Nanofiber-based yarns were applied to string-wound cartridge filters and compared with commercial filters. The average pore size, air permeability, and filter efficiency evaluations were performed to compare PVDF-based nanofiber composite yarns with commercially available polypropylene (PP) string-wound cartridge filters. The filtration efficiency of the nanofiberbased yarn string-wound cartridge filter significantly improved compared to the commercial filter. For a 5 ㎛ particle size, PVDF-based nanofiber composite yarn filters showed a removal efficiency of above 96% and an improved filter efficiency of more than 26% compared to commercial filters. Nanofiber membranes limited to surface filtration can perform to depth filtration if they consist of nanofiber-based composite yarns. The design of nominal and absolute filters can be based on the content of the nanofiber-based composite yarns. These results demonstrate that electro-spun PVDF-based composite yarns could potentially serve as string-wound cartridge filters during processing or pre-filtering in water treatment areas.

Keywords

Acknowledgement

본 연구는 산업통상자원부 우수기술연구센터(Advanced Technology Center, ATC, 10051891) 사업의 지원으로 수행되었습니다.

References

  1. http://onlinembr.info/membrane-process/classification-of-filtration-modes (accessed January 13, 2017).
  2. C. Kim, S. H. Lee, S. H. Jang, J. K. Cho, and J. S. Suk, "Cartridge Filter Using Nanofiber Composite Fiber Yarn and Method for Manufacturing Same", Korea Patent, 10-1739845 (2017).
  3. A. Rabbi, H. Bahrambeygi, A. M. Shoushtari, and K. Nasouri, "Incorporation of Nanofiber Layers in Nonwoven Materials for Improving Their Acoustic Properties", J. Eng. Fiber. Fabr., 2013, 8, 36-41.
  4. J. Xu, C. Liu, P. C. Hsu, K. Liu, R. Zhang, Y. Liu, and Y. Cui, "Roll-to-roll Transfer of Electrospun Nanofiber Film for High-efficiency Transparent Air Filter", Nano Lett., 2016, 16, 1270-1275. https://doi.org/10.1021/acs.nanolett.5b04596
  5. M. Faccini, C. Vaquero, and D. Amantia, "Development of Protective Clothing Against Nanoparticle Based on Electrospun Nanofibers", J. Nanomaterials, 2012, 2012, 892894.
  6. R. S. Ambekar and B. Kandasubramanian, "Advancements in Nanofibers for Wound Dressing: A Review", Eur. Polym. J., 2019, 117, 304-336. https://doi.org/10.1016/j.eurpolymj.2019.05.020
  7. N. Li, Q. Hui, H. Xue, and J. Xiong, "Electrospun Polyacrylonitrile Nanofiber Yarn Prepared by Funnel-shape Collector", Mater. Lett., 2012, 79, 245-247. https://doi.org/10.1016/j.matlet.2012.04.005
  8. H. Niu, W. Gao, T. Lin, X. Wang, and L. Kong, "Composite Yarns Fabricated from Continuous Needleless Electrospun Nanofibers", Polym. Eng. Sci., 2014, 54, 1495-1502. https://doi.org/10.1002/pen.23690
  9. E. Smit, U. Buttner, R. D. Sanderson, "Continuous Yarns from Electrospun Fibers", Polymer, 2005, 46, 2419-2423. https://doi.org/10.1016/j.polymer.2005.02.002
  10. C. Kim, "Preparation Method of Composite Yarn Including Nanofibers", Korea Patent, 10-1075882(2011).
  11. E. Boyraz, F. Yalcinkaya, J. Hruza, and J. Maryska, "Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology", Materials, 2019, 12, 2702-2714. https://doi.org/10.3390/ma12172702
  12. https://www.sealingandcontaminationtips.com/what-is-beta-ratio/ (accessed February 3, 2020).
  13. https://www.machinerylubrication.com/Read/1289/oil-filter-efficiency (accessed February 3, 2020).