DOI QR코드

DOI QR Code

Biological Synthesis of Genistein in Escherichia coli

  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 투고 : 2019.11.06
  • 심사 : 2019.12.22
  • 발행 : 2020.05.28

초록

Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen. In this study, we attempted to biologically synthesize genistein from either p-coumaric acid or naringenin using Escherichia coli as a biotransformation host. Four genes, Os4CL, PeCHS, RcIFS, and OsCPR, were used for genistein production. To functionally express RcIFS and OsCPR, two members of the cytochrome P450 family, in E. coli, the membrane-binding anchor domain of each gene was removed, and RcIFS and OsCPR were translationally fused to generate an RcIFS-OsCPR hybrid. Os4CL and PeCHS, or the RcIFS-OsCPR hybrid, were then transformed into E. coli BL21(DE3). Using these strains, we optimized our culture system at a laboratory scale in terms of the cell density, concentrations of substrate and isopropyl-β-D-thiogalactoside, temperature, and culture medium. Under the optimized culture conditions, genistein was produced at up to 35 mg/l and 18.6 mg/l using naringenin and p-coumaric acid, respectively.

키워드

참고문헌

  1. Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE. 1997. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J. Altern. Complement Med. 3: 7-12. https://doi.org/10.1089/acm.1997.3.7
  2. Morris PF, Ward EWB. 1992. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol. Mol. Plant Pathol. 40: 17-22. https://doi.org/10.1016/0885-5765(92)90067-6
  3. Swinny EE, Ryan KG. 2005. Red clover Trifolium pratense L. phytoestrogens: UV-B radiation increases isoflavone yield, and postharvest drying methods change the glucoside conjugate profiles. J. Agric. Food Chem. 53: 8273-8278. https://doi.org/10.1021/jf051431+
  4. Rivera-Vargas LI, Schmitthenner AF, Graham TL. 1993. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry 32: 851-857. https://doi.org/10.1016/0031-9422(93)85219-H
  5. Fang K, Dong H, Wang D, Gong J, Huang W, Lu F. 2016. Soy isoflavones and glucose metabolism in menopausal women: a systematic review and meta-analysis of randomized controlled trials. Mol. Nutr. Food Res. 60: 1602-1614. https://doi.org/10.1002/mnfr.201501024
  6. Pollard M, Luckert PH. 1997. Influence of isoflavones in soy protein isolates on development of induced prostate-related cancers in L-W rats. Nutr. Cancer 28: 41-45. https://doi.org/10.1080/01635589709514551
  7. Ko KP. 2014. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev. 15: 7001-7010. https://doi.org/10.7314/APJCP.2014.15.17.7001
  8. Lee MJ, Kim JH. 2007. Estimated dietary isoflavone intake among Korean adults. Nutr. Res. Pract. 1: 206-211. https://doi.org/10.4162/nrp.2007.1.3.206
  9. Mora-Pale M, Sanchez-Rodriguez SP, Linhatrdt RJ, Dordick JS, Koffas MAG. 2013. Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci. 210: 10-24. https://doi.org/10.1016/j.plantsci.2013.05.005
  10. Wang Y, Chen S, Yu O. 2011. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 91: 949-956. https://doi.org/10.1007/s00253-011-3449-2
  11. Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH. 2014. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl. Environ. Microbiol. 80: 2754-2762. https://doi.org/10.1128/AEM.03797-13
  12. Kim BG. 2019. Biosynthesis of bioactive isokaempferide from naringenin in Escherichia coli. J. Appl. Biol Chem. 62: 1-6. https://doi.org/10.3839/jabc.2019.001
  13. Kim BG, Shin KH, Lee Y, Hur HG, Lim Y, Ahn JH. 2005. Multiple regiospecific methylations of a flavonoid by plant Omethyltransferases expressed in E. coli. Biotechnol. Lett. 27: 1861-1864. https://doi.org/10.1007/s10529-005-3893-0
  14. Ahn BC, Kim BG, Jeon YM, Lee EJ, Lim Y, Ahn JH. 2009. Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 19: 387-390. https://doi.org/10.4014/jmb.0802.116
  15. Lee YJ, Kim BG, Park Y, Lim YH, Hur HG, Ahn JH. 2006. Biotransformation of flavonoids with O-methyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16: 1090-1096.
  16. Yang SM, Han SH, Kim BG, Ahn JH. 2014. Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 41: 1311-1318. https://doi.org/10.1007/s10295-014-1465-9
  17. Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA. 2011. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77: 3451-3460. https://doi.org/10.1128/AEM.02186-10
  18. Fang Z, Jones JA, Zhou J, Koffas MAG. 2018. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnol. J. 13: e1700576.
  19. Chemler JA, Fowler ZL, McHugh KP, Koffas MA. 2010. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12: 96-104. https://doi.org/10.1016/j.ymben.2009.07.003
  20. Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, et al. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35: 55-63. https://doi.org/10.1016/j.ymben.2016.01.006
  21. Wang R, Zhao S, Wang Z, Koffas MA. 2019. Recent advances in modular co-culture engineering for synthesis of natural products. Curr. Opin. Biotechnol. 62: 65-71. https://doi.org/10.1016/j.copbio.2019.09.004
  22. Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493. https://doi.org/10.1104/pp.126.2.485
  23. Kim BG, Kim SY, Song HS, Lee C, Hur HG, Kim SI, et al. 2003. Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense. Mol Cells. 15: 301-306.
  24. Kim DH, Kim BG, Jung NR, Ahn JH. 2009. Production of genistein from naringenin using Escherichia coli containing isoflavone synthase-cytochrome P450 reductase fusion protein. J. Microbiol. Biotechnol. 19: 1612-1616. https://doi.org/10.4014/jmb.0905.05043
  25. Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn JH. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate:coenzyme A ligase (4CL) from rice. Bull Korean Chem. Soc. 28: 365-366. https://doi.org/10.5012/bkcs.2007.28.3.365
  26. Kim BG, Lee ER, Ahn JH. 2012. Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J. Korean Soc. Appl. Biol. Chem. 55: 141-145.
  27. Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, et al. 2015. ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5: 11301. https://doi.org/10.1038/srep11301
  28. Jones JA, Collins SM, Vernacchio VR, Lachance DM, Koffas MAG. 2016. Optimization of naringenin and p-coumaric acid hydroxylation using the native E. coli hydroxylase complex, HpaBC. Biotechnol. Prog. 32: 21-25. https://doi.org/10.1002/btpr.2185
  29. Leonard E, Koffas MAG. 2007. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl. Environ. Microbiol. 73: 7246-7251. https://doi.org/10.1128/AEM.01411-07
  30. Kim MJ, Kim BG, Ahn JH. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. https://doi.org/10.1007/s00253-013-5020-9