DOI QR코드

DOI QR Code

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Jia, Zongxiao (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhang, Lijuan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Fu, Shuilin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Gong, Heng (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Received : 2018.01.24
  • Accepted : 2018.05.01
  • Published : 2020.05.28

Abstract

To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

Keywords

References

  1. Teng WK, Ngoh GC, Yusoff R, Aroua MK. 2016. Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chem. Eng. J. 284: 469-477. https://doi.org/10.1016/j.cej.2015.08.108
  2. Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol 39: 217-226. https://doi.org/10.1007/s10295-011-1038-0
  3. Quispe CAG, Coronado CJR, Carvalho JA. 2013. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27: 475-493. https://doi.org/10.1016/j.rser.2013.06.017
  4. Xiu ZL, Zeng AP. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
  5. Xu G, Liu Y, Gao Q. 2016. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol. J. Biotechnol. 219: 59-71. https://doi.org/10.1016/j.jbiotec.2015.12.014
  6. Zhang YM, Luo JA, Zhao XB, Liu DH. 2015. A novel strategy for 1,3-propanediol recovery from fermentation broth and control of product colority using scraped thin-film evaporation for desalination. RSC Adv. 5: 48269-48274. https://doi.org/10.1039/C5RA05949F
  7. Gungormusler-Yilmaz M, Cicek N, Levin DB, Azbar N. 2016. Cell immobilization for microbial production of 1,3-propanediol. Crit. Rev. Biotechnol. 36: 482-494.
  8. Gao LR, Jiang X, Fu SL, Gong H. 2014. In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia. J. Biotechnol. 189: 9-14. https://doi.org/10.1016/j.jbiotec.2014.08.027
  9. Huang YN, Li ZM, Shimizu K, Ye Q. 2012. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour. Technol. 103: 351-359. https://doi.org/10.1016/j.biortech.2011.10.022
  10. Lin J, Zhang YQ, Xu DF, Xiang G, Jia ZX, Fu SL, et al. 2016. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 100: 2775-2784. https://doi.org/10.1007/s00253-015-7237-2
  11. Zhu CQ, Jiang X, Zhang YQ, Lin J, Fu SL, Gong H. 2015. Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol. Lett. 37: 1783-1790. https://doi.org/10.1007/s10529-015-1851-z
  12. Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, et al. 2014. Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production. J. Appl. Microbiol. 117: 690-698. https://doi.org/10.1111/jam.12588
  13. Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH. 2009. Metabolism in 1,3-Propanediol Fed-Batch Fermentation by a D-Lactate Deficient Mutant of Klebsiella pneumoniae. Biotechnol. Bioeng. 104: 965-972. https://doi.org/10.1002/bit.22455
  14. Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira de Mattos MJ, Neijssel OM. 1993. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol. Lett. 114: 279-283. https://doi.org/10.1016/0378-1097(93)90284-9
  15. Wang QZ, Ou MS, Kim Y, Ingram LO, Shanmugam KT. 2010. Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase. Appl. Environ. Microbiol. 76: 2107-2114. https://doi.org/10.1128/AEM.02545-09
  16. Wilkinson KD, Williams CH, Jr. 1981. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. J. Biol. Chem. 256: 2307-2314. https://doi.org/10.1016/S0021-9258(19)69779-6
  17. Murarka A, Clomburg JM, Moran S, Shanks JV, Gonzalez R. 2010. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J. Biol. Chem. 285: 31548-31558. https://doi.org/10.1074/jbc.M110.121095
  18. Menzel K, Ahrens K, Zeng A, Deckwer W. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng. 60: 617-626. https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<617::AID-BIT12>3.0.CO;2-L
  19. Menzel K, Zeng AP, Deckwer WD. 1997. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J. Biotechnol. 56: 135-142. https://doi.org/10.1016/S0168-1656(97)00110-7
  20. Yamamoto S, Izumiya H, Morita M, Arakawa E, Watanabe H. 2009. Application of lambda red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes. Gene 438: 57-64. https://doi.org/10.1016/j.gene.2009.02.015
  21. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the $NADH/NAD^+$ ratio. J. Bacteriol. 179: 5282-5287. https://doi.org/10.1128/jb.179.17.5282-5287.1997
  22. Russell GC, Guest JR. 1990. Overexpression of restructured pyruvate dehydrogenase complexes and site-directed mutagenesis of a potential active-site histidine residue. Biochem. J. 269: 443-450. https://doi.org/10.1042/bj2690443
  23. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  24. Samuelov NS, Lamed R, Lowe S, Zeikus JG. 1991. Influence of $CO_2-HCO_3$ levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57: 3013-3019. https://doi.org/10.1128/aem.57.10.3013-3019.1991
  25. Stephens PE, Darlison MG, Lewis HM, Guest JR. 1983. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component. Eur. J. Biochem. 133: 481-489. https://doi.org/10.1111/j.1432-1033.1983.tb07490.x
  26. Eikmanns BJ, Blombach B. 2014. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J. Biotechnol. 192 Pt B: 339-345. https://doi.org/10.1016/j.jbiotec.2013.12.019
  27. Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG. 2015. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. J. Biotechnol. 214: 33-42. https://doi.org/10.1016/j.jbiotec.2015.09.003
  28. Alscher G, Krug H, Liebig HP. 2001. Optimisation of $CO_2$ and temperature control in greenhouse crops by means of growth models at different abstraction levels - I. Control strategies, growth models and input data. Gartenbauwissenschaft 66: 105-114.
  29. Hsu HH, Abbo BG. 2004. Role of bicarbonate/$CO^2$ buffer in the initiation of vesicle-mediated calcification: mechanisms of aortic calcification related to atherosclerosis. Biochim. Biophys. Acta 1690: 118-123. https://doi.org/10.1016/j.bbadis.2004.06.001
  30. Sawers RG, Blokesch M, Bock A. 2004. Anaerobic formate and hydrogen metabolism. EcoSal Plus. 1(1). doi: 10.1128/ecosalplus.3.5.4.
  31. Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B, Sawers RG. 2013. Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J. Bacteriol. 195: 1428-1435. https://doi.org/10.1128/JB.02166-12
  32. Thome R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, et al. 2012. A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli. J. Biol. Chem. 287: 4671-4678. https://doi.org/10.1074/jbc.M111.327122
  33. Wu Z, Wang Z, Wang G, Tan T. 2013. Improved 1,3-propanediol production by engineering the 2,3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae. J. Biotechnol. 168: 194-200. https://doi.org/10.1016/j.jbiotec.2013.04.022
  34. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. 2004. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J. Bacteriol. 186: 7593-7600. https://doi.org/10.1128/JB.186.22.7593-7600.2004
  35. Lim JH, Seo SW, Kim SY, Jung GY. 2013. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab. Eng. 20: 49-55. https://doi.org/10.1016/j.ymben.2013.08.006
  36. Zhang YP, Huang ZH, Du CY, Li Y, Cao ZA. 2009. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101-106. https://doi.org/10.1016/j.ymben.2008.11.001
  37. Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK. 2014. Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl. Environ. Microbiol. 80: 6195-6203. https://doi.org/10.1128/AEM.02069-14
  38. Singh A, Lynch MD, Gill RT. 2009. Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab. Eng. 11: 347-354. https://doi.org/10.1016/j.ymben.2009.07.002
  39. Zhu J, Shimizu K. 2004. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl. Microbiol. Biotechnol. 64: 367-375. https://doi.org/10.1007/s00253-003-1499-9
  40. Bar-Even A. 2016. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochem. 55: 3851-3863. https://doi.org/10.1021/acs.biochem.6b00495
  41. Chen T, Liu WX, Fu J, Zhang B, Tang YJ. 2013. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J. Biotechnol. 168: 499-505. https://doi.org/10.1016/j.jbiotec.2013.09.020
  42. Wang Y, Tao F, Xin B, Liu H, Gao Y, Zhou NY, et al. 2017. Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab. Eng. 39: 90-101. https://doi.org/10.1016/j.ymben.2016.10.020

Cited by

  1. Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction vol.77, pp.1, 2020, https://doi.org/10.1007/s00284-019-01795-5