References
- Teng WK, Ngoh GC, Yusoff R, Aroua MK. 2016. Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chem. Eng. J. 284: 469-477. https://doi.org/10.1016/j.cej.2015.08.108
- Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol 39: 217-226. https://doi.org/10.1007/s10295-011-1038-0
- Quispe CAG, Coronado CJR, Carvalho JA. 2013. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 27: 475-493. https://doi.org/10.1016/j.rser.2013.06.017
- Xiu ZL, Zeng AP. 2008. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78: 917-926. https://doi.org/10.1007/s00253-008-1387-4
- Xu G, Liu Y, Gao Q. 2016. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol. J. Biotechnol. 219: 59-71. https://doi.org/10.1016/j.jbiotec.2015.12.014
- Zhang YM, Luo JA, Zhao XB, Liu DH. 2015. A novel strategy for 1,3-propanediol recovery from fermentation broth and control of product colority using scraped thin-film evaporation for desalination. RSC Adv. 5: 48269-48274. https://doi.org/10.1039/C5RA05949F
- Gungormusler-Yilmaz M, Cicek N, Levin DB, Azbar N. 2016. Cell immobilization for microbial production of 1,3-propanediol. Crit. Rev. Biotechnol. 36: 482-494.
- Gao LR, Jiang X, Fu SL, Gong H. 2014. In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia. J. Biotechnol. 189: 9-14. https://doi.org/10.1016/j.jbiotec.2014.08.027
- Huang YN, Li ZM, Shimizu K, Ye Q. 2012. Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour. Technol. 103: 351-359. https://doi.org/10.1016/j.biortech.2011.10.022
- Lin J, Zhang YQ, Xu DF, Xiang G, Jia ZX, Fu SL, et al. 2016. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 100: 2775-2784. https://doi.org/10.1007/s00253-015-7237-2
- Zhu CQ, Jiang X, Zhang YQ, Lin J, Fu SL, Gong H. 2015. Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol. Lett. 37: 1783-1790. https://doi.org/10.1007/s10529-015-1851-z
- Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, et al. 2014. Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production. J. Appl. Microbiol. 117: 690-698. https://doi.org/10.1111/jam.12588
- Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH. 2009. Metabolism in 1,3-Propanediol Fed-Batch Fermentation by a D-Lactate Deficient Mutant of Klebsiella pneumoniae. Biotechnol. Bioeng. 104: 965-972. https://doi.org/10.1002/bit.22455
- Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira de Mattos MJ, Neijssel OM. 1993. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol. Lett. 114: 279-283. https://doi.org/10.1016/0378-1097(93)90284-9
- Wang QZ, Ou MS, Kim Y, Ingram LO, Shanmugam KT. 2010. Metabolic Flux Control at the Pyruvate Node in an Anaerobic Escherichia coli Strain with an Active Pyruvate Dehydrogenase. Appl. Environ. Microbiol. 76: 2107-2114. https://doi.org/10.1128/AEM.02545-09
- Wilkinson KD, Williams CH, Jr. 1981. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. J. Biol. Chem. 256: 2307-2314. https://doi.org/10.1016/S0021-9258(19)69779-6
- Murarka A, Clomburg JM, Moran S, Shanks JV, Gonzalez R. 2010. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. J. Biol. Chem. 285: 31548-31558. https://doi.org/10.1074/jbc.M110.121095
- Menzel K, Ahrens K, Zeng A, Deckwer W. 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng. 60: 617-626. https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<617::AID-BIT12>3.0.CO;2-L
- Menzel K, Zeng AP, Deckwer WD. 1997. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J. Biotechnol. 56: 135-142. https://doi.org/10.1016/S0168-1656(97)00110-7
- Yamamoto S, Izumiya H, Morita M, Arakawa E, Watanabe H. 2009. Application of lambda red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes. Gene 438: 57-64. https://doi.org/10.1016/j.gene.2009.02.015
-
Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the
$NADH/NAD^+$ ratio. J. Bacteriol. 179: 5282-5287. https://doi.org/10.1128/jb.179.17.5282-5287.1997 - Russell GC, Guest JR. 1990. Overexpression of restructured pyruvate dehydrogenase complexes and site-directed mutagenesis of a potential active-site histidine residue. Biochem. J. 269: 443-450. https://doi.org/10.1042/bj2690443
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
-
Samuelov NS, Lamed R, Lowe S, Zeikus JG. 1991. Influence of
$CO_2-HCO_3$ levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57: 3013-3019. https://doi.org/10.1128/aem.57.10.3013-3019.1991 - Stephens PE, Darlison MG, Lewis HM, Guest JR. 1983. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component. Eur. J. Biochem. 133: 481-489. https://doi.org/10.1111/j.1432-1033.1983.tb07490.x
- Eikmanns BJ, Blombach B. 2014. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J. Biotechnol. 192 Pt B: 339-345. https://doi.org/10.1016/j.jbiotec.2013.12.019
- Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG. 2015. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. J. Biotechnol. 214: 33-42. https://doi.org/10.1016/j.jbiotec.2015.09.003
-
Alscher G, Krug H, Liebig HP. 2001. Optimisation of
$CO_2$ and temperature control in greenhouse crops by means of growth models at different abstraction levels - I. Control strategies, growth models and input data. Gartenbauwissenschaft 66: 105-114. -
Hsu HH, Abbo BG. 2004. Role of bicarbonate/
$CO^2$ buffer in the initiation of vesicle-mediated calcification: mechanisms of aortic calcification related to atherosclerosis. Biochim. Biophys. Acta 1690: 118-123. https://doi.org/10.1016/j.bbadis.2004.06.001 - Sawers RG, Blokesch M, Bock A. 2004. Anaerobic formate and hydrogen metabolism. EcoSal Plus. 1(1). doi: 10.1128/ecosalplus.3.5.4.
- Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B, Sawers RG. 2013. Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J. Bacteriol. 195: 1428-1435. https://doi.org/10.1128/JB.02166-12
- Thome R, Gust A, Toci R, Mendel R, Bittner F, Magalon A, et al. 2012. A sulfurtransferase is essential for activity of formate dehydrogenases in Escherichia coli. J. Biol. Chem. 287: 4671-4678. https://doi.org/10.1074/jbc.M111.327122
- Wu Z, Wang Z, Wang G, Tan T. 2013. Improved 1,3-propanediol production by engineering the 2,3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae. J. Biotechnol. 168: 194-200. https://doi.org/10.1016/j.jbiotec.2013.04.022
- Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT. 2004. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J. Bacteriol. 186: 7593-7600. https://doi.org/10.1128/JB.186.22.7593-7600.2004
- Lim JH, Seo SW, Kim SY, Jung GY. 2013. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab. Eng. 20: 49-55. https://doi.org/10.1016/j.ymben.2013.08.006
- Zhang YP, Huang ZH, Du CY, Li Y, Cao ZA. 2009. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101-106. https://doi.org/10.1016/j.ymben.2008.11.001
- Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK. 2014. Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl. Environ. Microbiol. 80: 6195-6203. https://doi.org/10.1128/AEM.02069-14
- Singh A, Lynch MD, Gill RT. 2009. Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab. Eng. 11: 347-354. https://doi.org/10.1016/j.ymben.2009.07.002
- Zhu J, Shimizu K. 2004. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl. Microbiol. Biotechnol. 64: 367-375. https://doi.org/10.1007/s00253-003-1499-9
- Bar-Even A. 2016. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochem. 55: 3851-3863. https://doi.org/10.1021/acs.biochem.6b00495
- Chen T, Liu WX, Fu J, Zhang B, Tang YJ. 2013. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J. Biotechnol. 168: 499-505. https://doi.org/10.1016/j.jbiotec.2013.09.020
- Wang Y, Tao F, Xin B, Liu H, Gao Y, Zhou NY, et al. 2017. Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab. Eng. 39: 90-101. https://doi.org/10.1016/j.ymben.2016.10.020
Cited by
- Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction vol.77, pp.1, 2020, https://doi.org/10.1007/s00284-019-01795-5