References
- Negron ME, Kharod GA, Bower WA, Walke H. 2019. Notes from the field: human Brucella abortus RB51 infections caused by consumption of unpasteurized domestic dairy products - United States, 2017-2019. MMWR Morb. Mortal. Wkly. Rep. 68: 185. https://doi.org/10.15585/mmwr.mm6807a6
- Guimaraes ES, Gomes MTR, Campos PC, Mansur DS, dos Santos AA, Harms J, et al. 2019. Brucella abortus cyclic dinucleotides trigger STING-dependent unfolded protein response that favors bacterial replication. J. Immunol. 202: 2671-2681. https://doi.org/10.4049/jimmunol.1801233
- de Figueiedo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. 2015. Pathogenesis and immunobiology of brucellosis. Am. J. Pathol. 185: 1505-1517. https://doi.org/10.1016/j.ajpath.2015.03.003
- Barquero-Calvo E, Mora-Cartin R, Arce-Gorvel V, de Diego JL, Chacon-Diaz C, Chaves-Olarte E, et al. 2015. Brucella abortus induces the premature death of human neutrophils through the action of its lipopolysaccharide. PLoS Pathog. 11: e1004853. https://doi.org/10.1371/journal.ppat.1004853
- Bosilkovski M. 2019. Brucellosis: Microbiology, Epidemiology, and Pathogenesis. Available from https://www.uptodate.com/contents/brucellosis-microbiology-epidemiology-and-pathogenesis. Accessed May 31, 2019.
- Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW. 2013. Progress in Brucella vaccine development. Front. Biol. (Beijing) 8: 60-77. https://doi.org/10.1007/s11515-012-1196-0
- Dorneles EMS, Sriranganathan N, Lage AP. 2015. Recent advances in Brucella abortus vaccines. Vet. Res. 46: 76. https://doi.org/10.1186/s13567-015-0199-7
- Khan MZ, Zahoor M. 2018. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 14: 65. https://doi.org/10.3390/tropicalmed3020065
- Das UN. 2018. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J. Adv. Res. 11: 57-66. https://doi.org/10.1016/j.jare.2018.01.001
- Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 579: 5157-5162. https://doi.org/10.1016/j.febslet.2005.08.028
- Correia M, Michel V, Matos AA, Carvalho P, Oliveira MJ, Ferreira R, et al. 2012. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS One. 7: E35072. https://doi.org/10.1371/journal.pone.0035072
- Sanders TAB. 2016. Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health, pp. 1-20. 1st Ed. Woodhead Publishing, Cambridge.
- Lankinen MA, Fauland A, Shimizu B, Agren J, Wheelock CE, Laakso M, et al. 2019. Inflammatory response to dietary linoleic acid depends on FADS1 genotype. Am. J. Clin. Nutr. 108: 1-11.
- Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, et al. 2017. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J. Ethnopharmacol. 198: 5-14. https://doi.org/10.1016/j.jep.2016.12.026
- Grillo MJ, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 2012. What have we learned from brucellosis in the mouse model? Vet. Res. 43: 29. https://doi.org/10.1186/1297-9716-43-29
- Dilika F, Bremner PD, Meyer JJ. 2000. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia 71: 450-452. https://doi.org/10.1016/S0367-326X(00)00150-7
- Peng M, Tabashsum Z, Patel P, Bernhardt C, Biswas D. 2018. Linoleic acids overproducing Lactobacillus casei limits growth, survival, and virulence of Salmonella Typhimurium and enterohaemorrhagic Escherichia coli. Front. Microbiol. 9: 2663. https://doi.org/10.3389/fmicb.2018.02663
- Gutierrez-Jimenez C, Mora-Cartin R, Altamirano-Silva P, Chacon-Diaz C, Chaves-Olarte E, Moreno E, Barquero-Calvo E. 2019. Neutrophils as trojan horse vehicles for Brucella abortus macrophage infection. Front. Immunol. 10: 1012. https://doi.org/10.3389/fimmu.2019.01012
- Hop HT, Arayan LT, Reyes AWB, Huy TXN, Baek EJ, Min WG, et al. 2017. Inhibitory effect of the ethanol extract of a rice bran mixture comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus uptake by professional and nonprofessional phagocytes. J. Microbiol. Biotechnol. 27: 1885-1891. https://doi.org/10.4014/jmb.1704.04064
- Gross A, Spiesser S, Terraza A, Rouot B, Caron E, Dornand J. 1998. Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect. Immun. 66: 1309-1316. https://doi.org/10.1128/iai.66.4.1309-1316.1998
- Wang M, Qureshi N, Soeurt N, Splitter G. 2001. High levels of nitric oxide production decrease early but increase late survival of Brucella abortus in macrophages. Microb. Pathog. 31: 221-230. https://doi.org/10.1006/mpat.2001.0463
-
Liang JF, Akaike T. 1998. Protective effect of linoleic acid on IFN-
$\gamma$ -induced cellular injury in primary culture hepatocytes. J. Biochem. 123: 213-218. https://doi.org/10.1093/oxfordjournals.jbchem.a021924 - Babu U, Wiesenfeld P, Gaines D, Raybourne RB. 2009. Effect of long chain fatty acids on Salmonella killing, superoxide and nitric oxide production by chicken macrophages. Int. J. Food Microbiol. 132: 67-72. https://doi.org/10.1016/j.ijfoodmicro.2009.03.017
- Changhua L, Yindong Y, Defa L, Lidan Z, Shiyan Q, Jianjun X. 2005. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J. Nutr. 135: 239-244. https://doi.org/10.1093/jn/135.2.239
- He X, Zhang H, Yang X, Zhang S, Dai Q, Xiao W, et al. 2007. Modulation of immune function by conjugated linoleic acid in chickens. Food Agr. Immunol. 18: 169-178. https://doi.org/10.1080/09540100701718419
- Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard JP. 2002. The innate immune response against Brucella in humans. Vet. Microbiol. 90: 383-394. https://doi.org/10.1016/S0378-1135(02)00223-7
- Zhan Y, Cheers C. 1995. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect. Immun. 63, 1387-1390. https://doi.org/10.1128/iai.63.4.1387-1390.1995
- Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. 2008. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J. Immunol. 180: 1080-1087. https://doi.org/10.4049/jimmunol.180.2.1080
- Malovrh T, Kompan L, Juntes P, Wraber B, Spindler-Vesel A, Kompan D. 2009. Influence of conjugated linoleic acid on the porcine immune response and morbidity: a randomized controlled trial. Lipids Health Dis. 8: 22. https://doi.org/10.1186/1476-511X-8-22
- Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL. 2001. Interferon-g is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunol. 103: 511-518. https://doi.org/10.1046/j.1365-2567.2001.01258.x
- Corsetti PP, de Almeida LA, Carvalho NB, Azevedo V, Silva TMA, Teixeira HC, et al. 2013. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice. PLoS One 8: e74729. https://doi.org/10.1371/journal.pone.0074729
- Fernandes DM, Baldwin CL. 1995. Interleukin-10 downregulates protective immunity to Brucella abortus. Infect. Immun. 63, 1130-1133. https://doi.org/10.1128/iai.63.3.1130-1133.1995
- Sammon AM. 1999. Dietary linoleic acid, immune inhibition and disease. Postgrad. Med. J. 75: 129-132. https://doi.org/10.1136/pgmj.75.881.129