DOI QR코드

DOI QR Code

Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins

  • Kwon, Soon-Kyeong (Division of Life Science, Gyeongsang National University) ;
  • Jun, Sung-Hoon (Electron Microscopy Research Center, Korea Basic Science Institute) ;
  • Kim, Jihyun F. (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University)
  • Received : 2019.12.05
  • Accepted : 2020.03.27
  • Published : 2020.05.28

Abstract

Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the '3 omega motif.' This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B-C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these 'omega rhodopsins,' and speculated on their evolutionary origin of functional diversity.

Keywords

References

  1. Spudich JL, Yang CS, Jung KH, Spudich EN. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16: 365-392. https://doi.org/10.1146/annurev.cellbio.16.1.365
  2. Kandori H. 2004. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim. Biophys. Acta 1658: 72-79. https://doi.org/10.1016/j.bbabio.2004.03.015
  3. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114: 126-163. https://doi.org/10.1021/cr4003769
  4. Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6: 488-494. https://doi.org/10.1038/nrmicro1893
  5. Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233: 149-152. https://doi.org/10.1038/newbio233149a0
  6. Oesterhelt D, Stoeckenius W. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853-2857. https://doi.org/10.1073/pnas.70.10.2853
  7. Hildebrand E, Dencher N. 1975. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257: 46-48. https://doi.org/10.1038/257046a0
  8. Schobert B, Lanyi JK. 1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257: 10306-10313. https://doi.org/10.1016/S0021-9258(18)34020-1
  9. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296: 2395-2398. https://doi.org/10.1126/science.1072068
  10. Sineshchekov OA, Jung KH, Spudich JL. 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99: 8689-8694. https://doi.org/10.1073/pnas.122243399
  11. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902-1906. https://doi.org/10.1126/science.289.5486.1902
  12. Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, et al. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102: 18147-18152. https://doi.org/10.1073/pnas.0509073102
  13. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK. 2005. Xanthorhodopsin: a proton pump with a lightharvesting carotenoid antenna. Science 309: 2061-2064. https://doi.org/10.1126/science.1118046
  14. Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. 2008. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ. Microbiol. 10: 1039-1056. https://doi.org/10.1111/j.1462-2920.2007.01525.x
  15. Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH, Yoon JH, et al. 2013. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5: 187-199. https://doi.org/10.1093/gbe/evs134
  16. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, et al. 2014. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl. Acad. Sci. USA 111: 6732-6737. https://doi.org/10.1073/pnas.1403051111
  17. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, et al. 2013. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4: 1678. https://doi.org/10.1038/ncomms2689
  18. Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, et al. 2016. A natural light-driven inward proton pump. Nat. Commun. 7: 13415. https://doi.org/10.1038/ncomms13415
  19. Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, et al. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl. Acad. Sci. USA 116: 20574-20583. https://doi.org/10.1073/pnas.1907517116
  20. Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, et al. 2018. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558: 595-599. https://doi.org/10.1038/s41586-018-0225-9
  21. Kim K, Kwon SK, Jun SH, Cha JS, Kim H, Lee W, et al. 2016. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat. Commun. 7: 12677. https://doi.org/10.1038/ncomms12677
  22. Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, et al. 2019. X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin. Sci. Rep. 9: 11283. https://doi.org/10.1038/s41598-019-47445-5
  23. Shibata M, Inoue K, Ikeda K, Konno M, Singh M, Kataoka C, et al. 2018. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8: 8262. https://doi.org/10.1038/s41598-018-26606-y
  24. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105: 16561-16565. https://doi.org/10.1073/pnas.0807162105
  25. Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK. 2010. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49: 9792-9799. https://doi.org/10.1021/bi1014166
  26. Tsukamoto T, Inoue K, Kandori H, Sudo Y. 2013. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J. Biol. Chem. 288: 21581-21592. https://doi.org/10.1074/jbc.M113.479394
  27. Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, et al. 2016. X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetic function. J. Biol. Chem. 291: 12223-12232. https://doi.org/10.1074/jbc.M116.719815
  28. Tian B, Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol. 18: 512-520. https://doi.org/10.1016/j.tim.2010.07.007
  29. Misra R, Eliash T, Sudo Y, Sheves M. 2019. Retinal-salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123: 10-20. https://doi.org/10.1021/acs.jpcb.8b06795
  30. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, et al. 2003. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 10: 137-145. https://doi.org/10.1093/dnares/10.4.137
  31. Choi AR, Shi L, Brown LS, Jung KH. 2014. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 9: e110643. https://doi.org/10.1371/journal.pone.0110643
  32. Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK. 2009. Reconstitution of Gloeobacter violaceus rhodopsin with a lightharvesting carotenoid antenna. Biochemistry 48: 10948-10955. https://doi.org/10.1021/bi901552x
  33. Iyer ES, Gdor I, Eliash T, Sheves M, Ruhman S. 2015. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex. J. Phys. Chem. B 119: 2345-2349. https://doi.org/10.1021/jp506639w
  34. Jana S, Eliash T, Jung KH, Sheves M. 2017. Retinal binding to Apo-Gloeobacter rhodopsin: the role of pH and retinal-carotenoid interaction. J. Phys. Chem. B 121: 10759-10769. https://doi.org/10.1021/acs.jpcb.7b07523
  35. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5: e77. https://doi.org/10.1371/journal.pbio.0050077
  36. Jezberova J, Jezbera J, Hahn MW. 2013. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats. PLoS One 8: e68542. https://doi.org/10.1371/journal.pone.0068542
  37. Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, et al. 2009. Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J. 3: 726-737. https://doi.org/10.1038/ismej.2009.13
  38. Keffer JL, Hahn MW, Maresca JA. 2015. Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola. J. Bacteriol. 197: 2704-2712. https://doi.org/10.1128/JB.00386-15
  39. Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, et al. 2016. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. Biochim. Biophys. Acta 1857: 1900-1908. https://doi.org/10.1016/j.bbabio.2016.09.006
  40. Dwulit-Smith JR, Hamilton JJ, Stevenson DM, He S, Oyserman BO, Moya-Flores F, et al. 2018. acI actinobacteria assemble a functional actinorhodopsin with natively synthesized retinal. Appl. Environ. Microbiol. 84: e01678-18.
  41. Mizuno CM, Rodriguez-Valera F, Ghai R. 2015. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics. mBio 6: e02083-14.
  42. Pushkarev A, Beja O. 2016. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10: 2331-2335. https://doi.org/10.1038/ismej.2016.7
  43. Kato Y, Inoue K, Kandori H. 2015. Kinetic analysis of $H^+-Na^+$ selectivity in a light-driven $Na^+$-pumping rhodopsin. J. Phys. Chem. Lett. 6: 5111-5115. https://doi.org/10.1021/acs.jpclett.5b02371
  44. Zhao H, Ma B, Ji L, Li L, Wang H, Chen D. 2017. Coexistence of light-driven $Na^{+}$ and $H^{+}$ transport in a microbial rhodopsin from Nonlabens dokdonensis. J. Photochem. Photobiol. B 172: 70-76. https://doi.org/10.1016/j.jphotobiol.2017.05.004
  45. Li H, Sineshchekov OA, da Silva GF, Spudich JL. 2015. In vitro demonstration of dual light-driven Na(+)/H(+) pumping by a microbial rhodopsin. Biophys. J. 109: 1446-1453. https://doi.org/10.1016/j.bpj.2015.08.018
  46. da Silva GF, Goblirsch BR, Tsai AL, Spudich JL. 2015. Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin. Biochemistry 54: 3950-3959. https://doi.org/10.1021/bi501386d
  47. Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, et al. 2019. Structure and mechanisms of sodiumpumping KR2 rhodopsin. Sci. Adv. 5: eaav2671. https://doi.org/10.1126/sciadv.aav2671
  48. Tsunoda SP, Prigge M, Abe-Yoshizumi R, Inoue K, Kozaki Y, Ishizuka T, et al. 2017. Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS One 12: e0179232. https://doi.org/10.1371/journal.pone.0179232
  49. Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, et al. 2015. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22: 390-395. https://doi.org/10.1038/nsmb.3002
  50. Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, et al. 2015. Structural basis for $Na^+$ transport mechanism by a lightdriven $Na^+$ pump. Nature 521: 48-53. https://doi.org/10.1038/nature14322
  51. Inoue K, Konno M, Abe-Yoshizumi R, Kandori H. 2015. The role of the NDQ motif in sodium-pumping rhodopsins. Angew. Chem. Int. Ed. Engl. 54: 11536-11539. https://doi.org/10.1002/anie.201504549
  52. Abe-Yoshizumi R, Inoue K, Kato HE, Nureki O, Kandori H. 2016. Role of Asn112 in a light-driven sodium ion-pumping rhodopsin. Biochemistry 55: 5790-5797. https://doi.org/10.1021/acs.biochem.6b00741
  53. Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, et al. 2015. Ultrafast photoreaction dynamics of a lightdriven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J. Phys. Chem. Lett. 6: 4481-4486. https://doi.org/10.1021/acs.jpclett.5b01994
  54. Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JT. 2016. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 18: 24729-24736. https://doi.org/10.1039/c6cp05240a
  55. Suomivuori CM, Gamiz-Hernandez AP, Sundholm D, Kaila VRI. 2017. Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proc. Natl. Acad. Sci. USA 114: 7043-7048. https://doi.org/10.1073/pnas.1703625114
  56. Nakajima Y, Tsukamoto T, Kumagai Y, Ogura Y, Hayashi T, Song J, et al. 2018. Presence of a haloarchaeal halorhodopsin-like Clpump in marine bacteria. Microbes Environ. 33: 89-97. https://doi.org/10.1264/jsme2.ME17197
  57. Kandori H. 2015. Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2: 52. https://doi.org/10.3389/fmolb.2015.00052
  58. Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, et al. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269: 73-75. https://doi.org/10.1126/science.7604281
  59. Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a Cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J. Biol. Chem. 291: 355-362. https://doi.org/10.1074/jbc.M115.688614
  60. Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H. 2014. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J. Phys. Chem. B 118: 11190-11199. https://doi.org/10.1021/jp507219q
  61. Tsukamoto T, Yoshizawa S, Kikukawa T, Demura M, Sudo Y. 2017. Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics. J. Phys. Chem. B 121: 2027-2038. https://doi.org/10.1021/acs.jpcb.6b11101
  62. Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M, DeLong EF, et al. 2016. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291: 17488-17495. https://doi.org/10.1074/jbc.M116.728220
  63. Inoue K, Nomura Y, Kandori H. 2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J. Biol. Chem. 291: 9883-9893. https://doi.org/10.1074/jbc.M116.716498
  64. Anashkin VA, Bertsova YV, Mamedov AM, Mamedov MD, Arutyunyan AM, Baykov AA, et al. 2018. Engineering a carotenoidbinding site in Dokdonia sp. PRO95 $Na^+$-translocating rhodopsin by a single amino acid substitution. Photosynth. Res. 136: 161-169. https://doi.org/10.1007/s11120-017-0453-0
  65. Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H. 2016. Mutant of a light-driven sodium ion pump can transport cesium ions. J. Phys. Chem. Lett. 7: 51-55. https://doi.org/10.1021/acs.jpclett.5b02385
  66. Inoue K, Del Carmen Marin M, Tomida S, Nakamura R, Nakajima Y, Olivucci M, et al. 2019. Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat. Commun. 10: 1993. https://doi.org/10.1038/s41467-019-10000-x
  67. Mackin KA, Roy RA, Theobald DL. 2014. An empirical test of convergent evolution in rhodopsins. Mol. Biol. Evol. 31: 85-95. https://doi.org/10.1093/molbev/mst171
  68. Shalaeva DN, Galperin MY, Mulkidjanian AY. 2015. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodiumtranslocating rhodopsins. Biol. Direct. 10: 63. https://doi.org/10.1186/s13062-015-0091-4
  69. Pinhassi J, DeLong EF, Beja O, Gonzalez JM, Pedros-Alio C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80: 929-954. https://doi.org/10.1128/MMBR.00003-16
  70. Albers SV, Van de Vossenberg JL, Driessen AJ, Konings WN. 2001. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5: 285-294. https://doi.org/10.1007/s007920100214
  71. Hase CC, Fedorova ND, Galperin MY, Dibrov PA. 2001. Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol. Mol. Biol. Rev. 65: 353-370.. https://doi.org/10.1128/MMBR.65.3.353-370.2001
  72. Riedel T, Gomez-Consarnau L, Tomasch J, Martin M, Jarek M, Gonzalez JM, et al. 2013. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 8: e57487. https://doi.org/10.1371/journal.pone.0057487
  73. Kwon YM, Kim SY, Jung KH, Kim SJ. 2016. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 5: 212-223. https://doi.org/10.1002/mbo3.321
  74. Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. 2017. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ. Microbiol. 19: 3755-3767. https://doi.org/10.1111/1462-2920.13877
  75. Hamilton JJ, Garcia SL, Brown BS, Oyserman BO, Moya-Flores F, Bertilsson S, et al. 2017. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2: e00091-17.
  76. Wurzbacher C, Salka I, Grossart HP. 2012. Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler. Environ. Microbiol. Rep. 4: 491-497. https://doi.org/10.1111/j.1758-2229.2012.00350.x

Cited by

  1. Microbial Rhodopsins: The Last Two Decades vol.75, pp.1, 2021, https://doi.org/10.1146/annurev-micro-031721-020452