References
- Spudich JL, Yang CS, Jung KH, Spudich EN. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16: 365-392. https://doi.org/10.1146/annurev.cellbio.16.1.365
- Kandori H. 2004. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim. Biophys. Acta 1658: 72-79. https://doi.org/10.1016/j.bbabio.2004.03.015
- Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114: 126-163. https://doi.org/10.1021/cr4003769
- Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6: 488-494. https://doi.org/10.1038/nrmicro1893
- Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233: 149-152. https://doi.org/10.1038/newbio233149a0
- Oesterhelt D, Stoeckenius W. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853-2857. https://doi.org/10.1073/pnas.70.10.2853
- Hildebrand E, Dencher N. 1975. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257: 46-48. https://doi.org/10.1038/257046a0
- Schobert B, Lanyi JK. 1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257: 10306-10313. https://doi.org/10.1016/S0021-9258(18)34020-1
- Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296: 2395-2398. https://doi.org/10.1126/science.1072068
- Sineshchekov OA, Jung KH, Spudich JL. 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99: 8689-8694. https://doi.org/10.1073/pnas.122243399
- Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902-1906. https://doi.org/10.1126/science.289.5486.1902
- Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, et al. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102: 18147-18152. https://doi.org/10.1073/pnas.0509073102
- Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK. 2005. Xanthorhodopsin: a proton pump with a lightharvesting carotenoid antenna. Science 309: 2061-2064. https://doi.org/10.1126/science.1118046
- Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. 2008. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ. Microbiol. 10: 1039-1056. https://doi.org/10.1111/j.1462-2920.2007.01525.x
- Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH, Yoon JH, et al. 2013. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5: 187-199. https://doi.org/10.1093/gbe/evs134
- Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, et al. 2014. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl. Acad. Sci. USA 111: 6732-6737. https://doi.org/10.1073/pnas.1403051111
- Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, et al. 2013. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4: 1678. https://doi.org/10.1038/ncomms2689
- Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, et al. 2016. A natural light-driven inward proton pump. Nat. Commun. 7: 13415. https://doi.org/10.1038/ncomms13415
- Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, et al. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl. Acad. Sci. USA 116: 20574-20583. https://doi.org/10.1073/pnas.1907517116
- Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, et al. 2018. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558: 595-599. https://doi.org/10.1038/s41586-018-0225-9
- Kim K, Kwon SK, Jun SH, Cha JS, Kim H, Lee W, et al. 2016. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat. Commun. 7: 12677. https://doi.org/10.1038/ncomms12677
- Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, et al. 2019. X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin. Sci. Rep. 9: 11283. https://doi.org/10.1038/s41598-019-47445-5
- Shibata M, Inoue K, Ikeda K, Konno M, Singh M, Kataoka C, et al. 2018. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8: 8262. https://doi.org/10.1038/s41598-018-26606-y
- Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105: 16561-16565. https://doi.org/10.1073/pnas.0807162105
- Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK. 2010. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49: 9792-9799. https://doi.org/10.1021/bi1014166
- Tsukamoto T, Inoue K, Kandori H, Sudo Y. 2013. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J. Biol. Chem. 288: 21581-21592. https://doi.org/10.1074/jbc.M113.479394
- Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, et al. 2016. X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetic function. J. Biol. Chem. 291: 12223-12232. https://doi.org/10.1074/jbc.M116.719815
- Tian B, Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol. 18: 512-520. https://doi.org/10.1016/j.tim.2010.07.007
- Misra R, Eliash T, Sudo Y, Sheves M. 2019. Retinal-salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123: 10-20. https://doi.org/10.1021/acs.jpcb.8b06795
- Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, et al. 2003. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 10: 137-145. https://doi.org/10.1093/dnares/10.4.137
- Choi AR, Shi L, Brown LS, Jung KH. 2014. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 9: e110643. https://doi.org/10.1371/journal.pone.0110643
- Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK. 2009. Reconstitution of Gloeobacter violaceus rhodopsin with a lightharvesting carotenoid antenna. Biochemistry 48: 10948-10955. https://doi.org/10.1021/bi901552x
- Iyer ES, Gdor I, Eliash T, Sheves M, Ruhman S. 2015. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex. J. Phys. Chem. B 119: 2345-2349. https://doi.org/10.1021/jp506639w
- Jana S, Eliash T, Jung KH, Sheves M. 2017. Retinal binding to Apo-Gloeobacter rhodopsin: the role of pH and retinal-carotenoid interaction. J. Phys. Chem. B 121: 10759-10769. https://doi.org/10.1021/acs.jpcb.7b07523
- Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5: e77. https://doi.org/10.1371/journal.pbio.0050077
- Jezberova J, Jezbera J, Hahn MW. 2013. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats. PLoS One 8: e68542. https://doi.org/10.1371/journal.pone.0068542
- Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, et al. 2009. Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J. 3: 726-737. https://doi.org/10.1038/ismej.2009.13
- Keffer JL, Hahn MW, Maresca JA. 2015. Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola. J. Bacteriol. 197: 2704-2712. https://doi.org/10.1128/JB.00386-15
- Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, et al. 2016. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. Biochim. Biophys. Acta 1857: 1900-1908. https://doi.org/10.1016/j.bbabio.2016.09.006
- Dwulit-Smith JR, Hamilton JJ, Stevenson DM, He S, Oyserman BO, Moya-Flores F, et al. 2018. acI actinobacteria assemble a functional actinorhodopsin with natively synthesized retinal. Appl. Environ. Microbiol. 84: e01678-18.
- Mizuno CM, Rodriguez-Valera F, Ghai R. 2015. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics. mBio 6: e02083-14.
- Pushkarev A, Beja O. 2016. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10: 2331-2335. https://doi.org/10.1038/ismej.2016.7
-
Kato Y, Inoue K, Kandori H. 2015. Kinetic analysis of
$H^+-Na^+$ selectivity in a light-driven$Na^+$ -pumping rhodopsin. J. Phys. Chem. Lett. 6: 5111-5115. https://doi.org/10.1021/acs.jpclett.5b02371 -
Zhao H, Ma B, Ji L, Li L, Wang H, Chen D. 2017. Coexistence of light-driven
$Na^{+}$ and$H^{+}$ transport in a microbial rhodopsin from Nonlabens dokdonensis. J. Photochem. Photobiol. B 172: 70-76. https://doi.org/10.1016/j.jphotobiol.2017.05.004 - Li H, Sineshchekov OA, da Silva GF, Spudich JL. 2015. In vitro demonstration of dual light-driven Na(+)/H(+) pumping by a microbial rhodopsin. Biophys. J. 109: 1446-1453. https://doi.org/10.1016/j.bpj.2015.08.018
- da Silva GF, Goblirsch BR, Tsai AL, Spudich JL. 2015. Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin. Biochemistry 54: 3950-3959. https://doi.org/10.1021/bi501386d
- Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, et al. 2019. Structure and mechanisms of sodiumpumping KR2 rhodopsin. Sci. Adv. 5: eaav2671. https://doi.org/10.1126/sciadv.aav2671
- Tsunoda SP, Prigge M, Abe-Yoshizumi R, Inoue K, Kozaki Y, Ishizuka T, et al. 2017. Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS One 12: e0179232. https://doi.org/10.1371/journal.pone.0179232
- Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, et al. 2015. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22: 390-395. https://doi.org/10.1038/nsmb.3002
-
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, et al. 2015. Structural basis for
$Na^+$ transport mechanism by a lightdriven$Na^+$ pump. Nature 521: 48-53. https://doi.org/10.1038/nature14322 - Inoue K, Konno M, Abe-Yoshizumi R, Kandori H. 2015. The role of the NDQ motif in sodium-pumping rhodopsins. Angew. Chem. Int. Ed. Engl. 54: 11536-11539. https://doi.org/10.1002/anie.201504549
- Abe-Yoshizumi R, Inoue K, Kato HE, Nureki O, Kandori H. 2016. Role of Asn112 in a light-driven sodium ion-pumping rhodopsin. Biochemistry 55: 5790-5797. https://doi.org/10.1021/acs.biochem.6b00741
- Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, et al. 2015. Ultrafast photoreaction dynamics of a lightdriven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J. Phys. Chem. Lett. 6: 4481-4486. https://doi.org/10.1021/acs.jpclett.5b01994
- Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JT. 2016. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 18: 24729-24736. https://doi.org/10.1039/c6cp05240a
- Suomivuori CM, Gamiz-Hernandez AP, Sundholm D, Kaila VRI. 2017. Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proc. Natl. Acad. Sci. USA 114: 7043-7048. https://doi.org/10.1073/pnas.1703625114
- Nakajima Y, Tsukamoto T, Kumagai Y, Ogura Y, Hayashi T, Song J, et al. 2018. Presence of a haloarchaeal halorhodopsin-like Clpump in marine bacteria. Microbes Environ. 33: 89-97. https://doi.org/10.1264/jsme2.ME17197
- Kandori H. 2015. Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2: 52. https://doi.org/10.3389/fmolb.2015.00052
- Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, et al. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269: 73-75. https://doi.org/10.1126/science.7604281
- Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a Cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J. Biol. Chem. 291: 355-362. https://doi.org/10.1074/jbc.M115.688614
- Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H. 2014. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J. Phys. Chem. B 118: 11190-11199. https://doi.org/10.1021/jp507219q
- Tsukamoto T, Yoshizawa S, Kikukawa T, Demura M, Sudo Y. 2017. Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics. J. Phys. Chem. B 121: 2027-2038. https://doi.org/10.1021/acs.jpcb.6b11101
- Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M, DeLong EF, et al. 2016. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291: 17488-17495. https://doi.org/10.1074/jbc.M116.728220
- Inoue K, Nomura Y, Kandori H. 2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J. Biol. Chem. 291: 9883-9893. https://doi.org/10.1074/jbc.M116.716498
-
Anashkin VA, Bertsova YV, Mamedov AM, Mamedov MD, Arutyunyan AM, Baykov AA, et al. 2018. Engineering a carotenoidbinding site in Dokdonia sp. PRO95
$Na^+$ -translocating rhodopsin by a single amino acid substitution. Photosynth. Res. 136: 161-169. https://doi.org/10.1007/s11120-017-0453-0 - Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H. 2016. Mutant of a light-driven sodium ion pump can transport cesium ions. J. Phys. Chem. Lett. 7: 51-55. https://doi.org/10.1021/acs.jpclett.5b02385
- Inoue K, Del Carmen Marin M, Tomida S, Nakamura R, Nakajima Y, Olivucci M, et al. 2019. Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat. Commun. 10: 1993. https://doi.org/10.1038/s41467-019-10000-x
- Mackin KA, Roy RA, Theobald DL. 2014. An empirical test of convergent evolution in rhodopsins. Mol. Biol. Evol. 31: 85-95. https://doi.org/10.1093/molbev/mst171
- Shalaeva DN, Galperin MY, Mulkidjanian AY. 2015. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodiumtranslocating rhodopsins. Biol. Direct. 10: 63. https://doi.org/10.1186/s13062-015-0091-4
- Pinhassi J, DeLong EF, Beja O, Gonzalez JM, Pedros-Alio C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80: 929-954. https://doi.org/10.1128/MMBR.00003-16
- Albers SV, Van de Vossenberg JL, Driessen AJ, Konings WN. 2001. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5: 285-294. https://doi.org/10.1007/s007920100214
- Hase CC, Fedorova ND, Galperin MY, Dibrov PA. 2001. Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol. Mol. Biol. Rev. 65: 353-370.. https://doi.org/10.1128/MMBR.65.3.353-370.2001
- Riedel T, Gomez-Consarnau L, Tomasch J, Martin M, Jarek M, Gonzalez JM, et al. 2013. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 8: e57487. https://doi.org/10.1371/journal.pone.0057487
- Kwon YM, Kim SY, Jung KH, Kim SJ. 2016. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 5: 212-223. https://doi.org/10.1002/mbo3.321
- Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. 2017. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ. Microbiol. 19: 3755-3767. https://doi.org/10.1111/1462-2920.13877
- Hamilton JJ, Garcia SL, Brown BS, Oyserman BO, Moya-Flores F, Bertilsson S, et al. 2017. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2: e00091-17.
- Wurzbacher C, Salka I, Grossart HP. 2012. Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler. Environ. Microbiol. Rep. 4: 491-497. https://doi.org/10.1111/j.1758-2229.2012.00350.x
Cited by
- Microbial Rhodopsins: The Last Two Decades vol.75, pp.1, 2021, https://doi.org/10.1146/annurev-micro-031721-020452