DOI QR코드

DOI QR Code

Interleukin-9 Inhibits Lung Metastasis of Melanoma through Stimulating Anti-Tumor M1 Macrophages

  • Park, Sang Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Do-Thi, Van Anh (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Lee, Jie-Oh (Department of Life Sciences, POSTECH) ;
  • Lee, Hayyoung (Institute of Biotechnology, Chungnam National University) ;
  • Kim, Young Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2020.02.17
  • Accepted : 2020.04.06
  • Published : 2020.05.31

Abstract

Interleukin-9 (IL-9) is well known for its role in allergic inflammation. For cancer, both pro- and anti-tumor effects of IL-9 were controversially reported, but the impact of IL-9 on tumor metastasis has not yet been clarified. In this study, IL-9 was expressed as a secretory form (sIL-9) and a membrane-bound form (mbIL-9) on B16F10 melanoma cells. The mbIL-9 was engineered as a chimeric protein with the transmembrane and cytoplasmic region of TNF-α. The effect of either mbIL-9 or sIL-9 expressing cells were analyzed on the metastasis capability of the cancer cells. After three weeks of tumor implantation into C57BL/6 mice through the tail vein, the number of tumor modules in lungs injected with IL-9 expressing B16F10 was 5-fold less than that of control groups. The percentages of CD4+ T cells, CD8+ T cells, NK cells, and M1 macrophages considerably increased in the lungs of the mice injected with IL-9 expressing cells. Among them, the M1 macrophage subset was the most significantly enhanced. Furthermore, peritoneal macrophages, which were stimulated with either sIL-9 or mbIL-9 expressing transfectant, exerted higher anti-tumor cytotoxicity compared with that of the mock control. The IL-9-stimulated peritoneal macrophages were highly polarized to M1 phenotype. Stimulation of RAW264.7 macrophages with sIL-9 or mbIL-9 expressing cells also significantly increased the cytotoxicity of those macrophages against wild-type B16F10 cells. These results clearly demonstrate that IL-9 can induce an anti-metastasis effect by enhancing the polarization and proliferation of M1 macrophages.

Keywords

References

  1. Chakraborty, S., Kubatzky, K.F., and Mitra, D.K. (2019). An update on interleukin-9: from its cellular source and signal transduction to its role in immunopathogenesis. Int. J. Mol. Sci. 20, e2113. https://doi.org/10.3390/ijms20092113
  2. Chang, H.C., Sehra, S., Goswami, R., Yao, W., Yu, Q., Stritesky, G.L., Jabeen, R., McKinley, C., Ahyi, A.N., Han, L., et al. (2010). The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527-534. https://doi.org/10.1038/ni.1867
  3. Ciccia, F., Guggino, G., Rizzo, A., Manzo, A., Vitolo, B., La Manna, M.P., Giardina, G., Sireci, G., Dieli, F., Montecucco, C.M., et al. (2015). Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 54, 2264-2272. https://doi.org/10.1093/rheumatology/kev252
  4. Conway, E.M., Pikor, L.A., Kung, S.H., Hamilton, M.J., Lam, S., Lam, W.L., and Bennewith, K.L. (2016). Macrophages, inflammation, and lung cancer. Am. J. Respir. Crit. Care Med. 193, 116-130. https://doi.org/10.1164/rccm.201508-1545CI
  5. Dantas, A.T., Marques, C.D., da Rocha Junior, L.F., Cavalcanti, M.B., Goncalves, S.M., Cardoso, P.R., Mariz Hde, A., Rego, M.J., Duarte, A.L., Pitta Ida, R., et al. (2015). Increased serum interleukin-9 levels in rheumatoid arthritis and systemic lupus erythematosus: pathogenic role or just an epiphenomenon? Dis. Markers 2015, 519638. https://doi.org/10.1155/2015/519638
  6. Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A., Mitsdoerffer, M., Strom, T.B., Elyaman, W., Ho, I.C., et al. (2008). IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 9, 1347-1355. https://doi.org/10.1038/ni.1677
  7. Do Thi, V.A., Jeon, H.M., Park, S.M., Lee, H., and Kim, Y.S. (2019). Cell-based IL-15:IL-15Ralpha secreting vaccine as an effective therapy for CT26 colon cancer in mice. Mol. Cells 42, 869-883. https://doi.org/10.14348/molcells.2019.0188
  8. Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2016). The membranebound form of IL-17A promotes the growth and tumorigenicity of colon cancer cells. Mol. Cells 39, 536-542. https://doi.org/10.14348/molcells.2016.0048
  9. Do Thi, V.A., Park, S.M., Lee, H., and Kim, Y.S. (2018). Ectopically expressed membrane-bound form of IL-9 exerts immune-stimulatory effect on CT26 colon carcinoma cells. Immune Netw. 18, e12. https://doi.org/10.4110/in.2018.18.e12
  10. Edin, S., Wikberg, M.L., Dahlin, A.M., Rutegard, J., Oberg, A., Oldenborg, P.A., and Palmqvist, R. (2012). The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7, e47045. https://doi.org/10.1371/journal.pone.0047045
  11. Edin, S., Wikberg, M.L., Oldenborg, P.A., and Palmqvist, R. (2013). Macrophages: good guys in colorectal cancer. Oncoimmunology 2, e23038. https://doi.org/10.4161/onci.23038
  12. Fang, Y., Chen, X., Bai, Q., Qin, C., Mohamud, A.O., Zhu, Z., Ball, T.W., Ruth, C.M., Newcomer, D.R., Herrick, E.J., et al. (2015). IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J. Surg. Oncol. 111, 969-974. https://doi.org/10.1002/jso.23930
  13. Goswami, R. and Kaplan, M.H. (2011). A brief history of IL-9. J. Immunol. 186, 3283-3288. https://doi.org/10.4049/jimmunol.1003049
  14. Hsieh, T.H., Hsu, C.Y., Tsai, C.F., Chiu, C.C., Liang, S.S., Wang, T.N., Kuo, P.L., Long, C.Y., and Tsai, E.M. (2016). A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting beta-catenin/LEF-1 signaling. Sci. Rep. 6, 19156. https://doi.org/10.1038/srep19156
  15. Kaushik, N.K., Kaushik, N., Adhikari, M., Ghimire, B., Linh, N.N., Mishra, Y.K., Lee, S.J., and Choi, E.H. (2019). Preventing the solid cancer progression via release of anticancer-cytokines in co-culture with cold plasma-stimulated macrophages. Cancers (Basel) 11, e842. https://doi.org/10.3390/cancers11060842
  16. Kim, I.K., Kim, B.S., Koh, C.H., Seok, J.W., Park, J.S., Shin, K.S., Bae, E.A., Lee, G.E., Jeon, H., Cho, J., et al. (2015). Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat. Med. 21, 1010-1017. https://doi.org/10.1038/nm.3922
  17. Lanier, L.L. (2003). Natural killer cell receptor signaling. Curr. Opin. Immunol. 15, 308-314. https://doi.org/10.1016/S0952-7915(03)00039-6
  18. Lee, J.E., Zhu, Z., Bai, Q., Brady, T.J., Xiao, H., Wakefield, M.R., and Fang, Y. (2019). The role of interleukin-9 in cancer. Pathol. Oncol. Res. 2019 Apr 23 [Epub]. https://doi.org/10.1007/s12253-019-00665-6.
  19. Li, H., Nourbakhsh, B., Cullimore, M., Zhang, G.X., and Rostami, A. (2011). IL-9 is important for T-cell activation and differentiation in autoimmune inflammation of the central nervous system. Eur. J. Immunol. 41, 2197-2206. https://doi.org/10.1002/eji.201041125
  20. Liu, M., Luo, F., Ding, C., Albeituni, S., Hu, X., Ma, Y., Cai, Y., McNally, L., Sanders, M.A., Jain, D., et al. (2015). Dectin-1 activation by a natural product beta-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195, 5055-5065. https://doi.org/10.4049/jimmunol.1501158
  21. Lu, Y., Hong, B., Li, H., Zheng, Y., Zhang, M., Wang, S., Qian, J., and Yi, Q. (2014a). Tumor-specific IL-9-producing CD8+ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proc. Natl. Acad. Sci. U. S. A. 111, 2265-2270. https://doi.org/10.1073/pnas.1317431111
  22. Lu, Y., Hong, S., Li, H., Park, J., Hong, B., Wang, L., Zheng, Y., Liu, Z., Xu, J., He, J., et al. (2012). Th9 cells promote antitumor immune responses in vivo. J. Clin. Invest. 122, 4160-4171. https://doi.org/10.1172/JCI65459
  23. Lu, Y., Wang, Q., and Yi, Q. (2014b). Anticancer Tc9 cells: long-lived tumorkilling T cells for adoptive therapy. Oncoimmunology 3, e28542. https://doi.org/10.4161/onci.28542
  24. Ma, J., Liu, L., Che, G., Yu, N., Dai, F., and You, Z. (2010). The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10, 112. https://doi.org/10.1186/1471-2407-10-112
  25. Malka, Y., Hornakova, T., Royer, Y., Knoops, L., Renauld, J.C., Constantinescu, S.N., and Henis, Y.I. (2008). Ligand-independent homomeric and heteromeric complexes between interleukin-2 or -9 receptor subunits and the gamma chain. J. Biol. Chem. 283, 33569-33577. https://doi.org/10.1074/jbc.M803125200
  26. Mantovani, A. and Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231-237. https://doi.org/10.1016/j.coi.2010.01.009
  27. Mudter, J., Amoussina, L., Schenk, M., Yu, J., Brustle, A., Weigmann, B., Atreya, R., Wirtz, S., Becker, C., Hoffman, A., et al. (2008). The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J. Clin. Invest. 118, 2415-2426. https://doi.org/10.1172/JCI33227
  28. Mukaida, N., Nosaka, T., Nakamoto, Y., and Baba, T. (2018). Lung macrophages: multifunctional regulator cells for metastatic cells. Int. J. Mol. Sci. 20, 116. https://doi.org/10.3390/ijms20010116
  29. Nalleweg, N., Chiriac, M.T., Podstawa, E., Lehmann, C., Rau, T.T., Atreya, R., Krauss, E., Hundorfean, G., Fichtner-Feigl, S., Hartmann, A., et al. (2015). IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64, 743-755. https://doi.org/10.1136/gutjnl-2013-305947
  30. Orecchioni, M., Ghosheh, Y., Pramod, A.B., and Ley, K. (2019). Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10, 1084. https://doi.org/10.3389/fimmu.2019.01084
  31. Steiger, S., Kuhn, S., Ronchese, F., and Harper, J.L. (2015). Monosodium urate crystals induce upregulation of NK1.1-dependent killing by macrophages and support tumor-resident NK1.1+ monocyte/macrophage populations in antitumor therapy. J. Immunol. 195, 5495-5502. https://doi.org/10.4049/jimmunol.1401755
  32. Tan, S.Y. and Krasnow, M.A. (2016). Developmental origin of lung macrophage diversity. Development 143, 1318-1327. https://doi.org/10.1242/dev.129122
  33. Wang, J., Sun, M., Zhao, H., Huang, Y., Li, D., Mao, D., Zhang, Z., Zhu, X., Dong, X., and Zhao, X. (2019). IL-9 exerts antitumor effects in colon cancer and transforms the tumor microenvironment in vivo. Technol. Cancer Res. Treat. 18, 1533033819857737.
  34. Xu, F., Cui, W.Q., Wei, Y., Cui, J., Qiu, J., Hu, L.L., Gong, W.Y., Dong, J.C., and Liu, B.J. (2018). Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J. Exp. Clin. Cancer Res. 37, 207. https://doi.org/10.1186/s13046-018-0878-0
  35. Ye, Z.J., Zhou, Q., Yin, W., Yuan, M.L., Yang, W.B., Xiong, X.Z., Zhang, J.C., and Shi, H.Z. (2012). Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am. J. Respir. Crit. Care Med. 186, 1168-1179. https://doi.org/10.1164/rccm.201207-1307OC
  36. You, F.P., Zhang, J., Cui, T., Zhu, R., Lv, C.Q., Tang, H.T., and Sun, D.W. (2017). Th9 cells promote antitumor immunity via IL-9 and IL-21 and demonstrate atypical cytokine expression in breast cancer. Int. Immunopharmacol. 52, 163-167. https://doi.org/10.1016/j.intimp.2017.08.031
  37. Yuan, A., Hsiao, Y.J., Chen, H.Y., Chen, H.W., Ho, C.C., Chen, Y.Y., Liu, Y.C., Hong, T.H., Yu, S.L., Chen, J.J., et al. (2015). Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci. Rep. 5, 14273. https://doi.org/10.1038/srep14273

Cited by

  1. Crosstalk between the Producers and Immune Targets of IL-9 vol.20, pp.6, 2020, https://doi.org/10.4110/in.2020.20.e45
  2. Antibody-based delivery of interleukin-9 to neovascular structures: Therapeutic evaluation in cancer and arthritis vol.246, pp.8, 2020, https://doi.org/10.1177/1535370220981578
  3. Neural-Cadherin Influences the Homing of Terminally Differentiated Memory CD8 T Cells to the Lymph Nodes and Bone Marrow vol.44, pp.11, 2020, https://doi.org/10.14348/molcells.2021.0137