DOI QR코드

DOI QR Code

SWAT model calibration/validation using SWAT-CUP II: analysis for uncertainties of simulation run/iteration number

SWAT-CUP을 이용한 SWAT 모형 검·보정 II: 모의 실행 및 반복 횟수에 따른 불확실성 분석

  • Yu, Jisoo (Integrated Water Resources Management Research Center, K-water Research Institute) ;
  • Noh, Joonwoo (Integrated Water Resources Management Research Center, K-water Research Institute) ;
  • Cho, Younghyun (Korea-Mekong Water Resources Management Collaboration Research Center, K-water Research Institute)
  • 유지수 (K-water연구원 통합물관리연구소) ;
  • 노준우 (K-water연구원 통합물관리연구소) ;
  • 조영현 (K-water연구원 한-메콩물관리연구센터)
  • Received : 2020.03.09
  • Accepted : 2020.03.26
  • Published : 2020.05.31

Abstract

The main objective of the study is to propose the most efficient SWAT model calibration method using SWAT-CUP with less computing time and high performance. In order to achieve the goal, Case1-3 (250, 500, and 1,000 simulation runs) and Case4 (1,000 simulation runs in the first iteration and then 500 simulation runs for the following iterations) were defined to compare the results. When evaluating the values of the objective function, Case2 and Case3 reached the same value after the fourth iteration, and Case1 reached the closed value of Case2-3 after the eighth iteration. However, the final estimates of the parameters had different ranges in Cases1-3, and only the results of Case3 and Case4 converged similarly. Thus, it can be considered that the parameter calibration results are highly affected by the initial number of simulation runs. On the other hand, SWAT simulation results did not show the significant difference after the first iteration, unlike the parameter ranges. From the analysis results, we can conclude that the most suitable and effective method was to repeat one or two times of iterations with a sufficient number of simulation runs, as in Case4.

본 연구에서는 SWAT-CUP 프로그램을 이용한 SWAT 모형 매개변수 검·보정 수행 시 적은 계산 소요시간으로 모의 성능을 극대화할 수 있는 매개변수 보정 방안을 결정하기 위해 모의 실행 횟수에 따라 Case1~3(250, 500, 1,000번) 및 Case4(초기 1,000번, 이후 500번)로 구분하고, 이들 모의의 반복에 따른 보정 결과를 비교하였다. 선정한 목적함수에 대하여 모의 성능을 평가한 결과 각 모의 수행의 4번째 반복 이후 Case2와 Case3의 목적함수가 같은 값(MNS 0.64)에 도달했으며, 8번째 이후부터는 Case1의 목적함수도 유사한 값에 도달하는 것을 확인하였다. 그러나 매개변수의 최종 산정 값은 Case1~3이 모두 상이하게 나타났으며, Case3과 Case4의 결과만 유사하게 수렴되는 것을 확인하였다. 이의 분석을 통해 보정 결과는 매개변수 값 산정을 위한 초기 모의 실행 횟수에 큰 영향을 받는다는 것을 알 수 있었다. 반면, 초기의 매개변수 변화 폭과는 다르게 이의 반복을 통한 SWAT 모의 수행 결과는 크게 달라지지 않았다. 이와 같은 결과를 종합하여 Case4와 같이 1,000번 이상의 충분한 모의 실행 횟수 설정 후 초기 1-2회 정도 반복 수행하고, 그 이후는 모의 횟수를 줄여서 반복하는 것을 가장 효율적인 SWAT-CUP을 이용한 SWAT 모형 검·보정 방안으로 제시할 수 있었다.

Keywords

References

  1. Abbaspour, K.C., Johnson, C., and Van Genuchten, M.T. (2004). "Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure." Vadose Zone Journal, ACSESS, Vol. 3, No. 4, pp. 1340-1352. https://doi.org/10.2136/vzj2004.1340
  2. Abbaspour, K.C., Vaghefi, S.A., and Srinivasan, R. (2018). "A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference." Water, MDPI, Vol. 10, No. 6.
  3. Abbaspour, K.C., Yang, J., Maximove, I., Siber, R., Bonger, K., Mieleiner, J., Zobrist, J., and Srinivasan, R. (2007). "Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT." Journal of Hydrology, Elsevier, Vol. 333, pp. 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  4. Andersson, J.C.M., Zehnder, A.J.B., Jewitt, G.P.W., and Yang, H. (2009). "Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukla River Basin, South Africa." Hydrology and Earth System Sciences, EGU, Vol. 13, pp. 2239-2347.
  5. Arnold, J.G., Allen, M.V., Williams, J.R., and Bosch, D.D. (2010). "Assessment of different representations of spatial variability on SWAT model performance." Transactions of the ASABE, ASABE, Vol. 53, No. 5, pp. 1433-1443. https://doi.org/10.13031/2013.34913
  6. Beven, K., and Binley, A. (1992). "The future of distributed models: Model calibration and uncertainty prediction." Hydrologic Process, Wiley, Vol. 6, pp. 279-298.
  7. McKay, M.D., Conover, W.J., and Beckman, R.J. (1979). "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code." Technometrics, Taylor & Francis, Vol. 21, No. 2, pp. 239-245. https://doi.org/10.1080/00401706.1979.10489755
  8. Petersen, B., Gernaey, K., Henze, M., and Vanrolleghem, P.A. (2003). "A comprehensive model calibration procedure for activated sludge model." Proceedings of the Water Environment Federation, Citeseer, Vol. 9, pp. 210-237.
  9. Schuol, J., and Abbaspour, K.C. (2006). "Calibration and uncertainty issues of hydrological model (SWAT) applied to West Africa." Advanced in Geosciences, EGU, Vol. 9, pp. 137-143. https://doi.org/10.5194/adgeo-9-137-2006
  10. Sellami, H., Jeunesse, I.L., Benabdallah, S., and Vanclooster, M. (2013). "Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean catchments." Hydrological Sciences Journal, Taylor & Francis, Vol. 58, No. 8, pp. 1635-1657. https://doi.org/10.1080/02626667.2013.837222
  11. Van Griensven, A., and Meixner, T. (2007). "A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models." Journal of Hydroinformatics, IWA, Vol. 9, No. 4, pp. 277-291. https://doi.org/10.2166/hydro.2007.104
  12. Vrugt, J.A., Ter Braak, C.J., Clark, M.P., Hyman, J.M., and Robinson, B.A. (2008). "Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation." Water Resources Research, AGU, Vol. 44, W00B09.
  13. Yang, J., Reichert, P., Abbaspour, K., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis techniques for a SWAT application to the Chaoche Basin in China." Journal of Hydrology, Elsevier, Vol. 358, pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012
  14. Yu, J., Noh, J., and Cho, Y. (2020). "SWAT model calibration/validation using SWAT-CUP I: Analysis for uncertainties of objective functions." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 1, pp. 45-56. https://doi.org/10.3741/JKWRA.2020.53.1.45