DOI QR코드

DOI QR Code

A Convergence Study on the effects of Ankle Joint Functional Electrical Stimulation after Visual feed-back Ankle training to Improve on Balance, Gait ability in Patient with Chronic Stroke

발목관절의 시각되먹임 운동 이후 기능적 전기자극이 만성 뇌졸중 환자의 균형 및 보행에 미치는 영향에 관한 융합적 연구

  • 김동훈 (김천대학교 물리치료학과) ;
  • 김경훈 (김천대학교 물리치료학과)
  • Received : 2020.02.25
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

This study was performed to evaluate the effects of Visual feed-back ankle training combined with Ankle joint Functional electrical stimulation on balance, gait ability on patient with Chronic Stroke. A total of 22 chronic stroke patients were divided into VFAF Group, CON group. Each group performed 60 minutes a day 5 times a week for 8 weeks. VFAF group revealed significant differences in balance and gait ability as compared to the CON groups(p<.05). The exercises were conducted for 60 min per day, five, per week for eight weeks. Balance and gait ability were examined at 0 week and after 8 weeks of intervention. Our results showed that VFAF was more effective on balance ability and gait ability in chronic stroke patients. We suggest that this study will be able to be used as an clinical intervention data for recovering balance and gait ability in chronic stroke patients.

본 연구의 목적은 시각적 되먹임 발목관절 운동 이후 기능적전기자극치료가 만성 뇌졸중 환자의 균형능력 및 보행능력에 대한 영향을 알아보기 위함이다. 선정기준에 따라 만성 뇌졸중 환자를 22명을 대상으로 두 군으로 실시하였다. VFAF군은 시각되먹임 발목관절운동 이후 기능적전기자극치료(n=11), CON군(n=11)은 보존적 물리치료를 시행하였다. 훈련은 1일 60분, 1주 5번, 총 8주간 시행하였다. 중재 전·후에 균형과 보행능력을 검사하였다. 훈련결과 VFAF군이 COP, LOS, BBS, FRT, 10m WT에서 CON군에 비해 통계학적으로 유의한 차이를 보였다. 그러므로 시각적 되먹임 발목관절 운동 이후 기능적전기자극치료의 융합은 뇌졸중 환자의 균형능력 및 보행능력의 향상을 위한 효과적인 중재로 임상에서 활용 될 수 있으며, 향후 졸중 환자를 위한 융합중재개발이 요구된다.

Keywords

References

  1. N. E. Mayo, S. Wood-Dauphinee, R. Cote, L. Durcan & J. Carlton. (2002). Activity, participation, and quality of life 6 months poststroke. Archives Physical Medicine Rehabilitation, 83(8), 1035-1042. https://doi.org/10.1053/apmr.2002.33984
  2. S. Y. Kim & I. H. Kim. (2018). Factors convergent influencing rehabilitation motivation among stroke patients. Journal of Digital Convergence, 15(9), 375-384. https://doi.org/10.14400/JDC.2017.15.9.375
  3. S. G. Chung, E. VanRey, Z. Bai. E. J. Roth & L. Q. Zhang. (2004). Biomechanic changes in passive properties of hemiplegic ankles with spastic hypertonia. Archives of Physical Medicine Rehabilitation, 85(10), 1638-1646. https://doi.org/10.1016/j.apmr.2003.11.041
  4. D. H. Kim, J. Y. Ko & Y. K. Woo. (2013). Effects of dual task training with visual restriction and an unstable base on the balance and attention of stroke patients. Journal of Physical Therapy Science, 25(12), 1579-1582. Doi : 10.1589/jpts.25.1579.
  5. P. Lisinski, J. Huber, E. Gajewska & P. Szlapinski. (2012). The body balance training effect on improvement of motor functions in paretic extremities in patients after stroke. a randomized, single blinded trial. Clinical Neurology Neurosurg, 114(1), 31-36. Doi : 10.1016/j.clineuro.2011.09.002.
  6. D. H. Kim & K. H. Kim. (2018). A Convergence study on the effects of functional electrical stimulation with mirror therapy on balance and gait ability in chronic stroke patients. Journal of the Korea Convergence Society, 9(10), 109-120. https://doi.org/10.15207/JKCS.2018.9.10.109
  7. A. Shumway-cook & M. H. Woolacott. (2006). Motor control : Translating research into clinical practice 3rd edition. Philadelphia, USA: Lippincott Williams & Wilkins.
  8. G. Yavuzer et al. (2008). Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. American Journal of Physical Medicine and Rehabilitation, 89(3), 393-398. Doi : 10.1016/j.apmr.2007.08.162.
  9. H. O. Karnath. (1996). Optokinetic stimulation influences the disturbed perception of body orientation in spatial neglect. Journal of Neurology, Neurosurgy, and Psychiatry, 60(2), 217-220. https://doi.org/10.1136/jnnp.60.2.217
  10. I. V. Bonan et al. (2004). Reliance on visual information after stroke. part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial. Archives Physical Medicine Rehabilitation, 85(2), 274-278. https://doi.org/10.1016/j.apmr.2003.06.016
  11. M. Grace Gaerlan, P. T. Alpert, C. Cross, M. Louis & S. Kowalski. (2012). Postural balance in young adults: the role of visual, vestibular and somatosensory systems. Journal of the American Academy of Nurse practitioners, 24(6), 375-381. Doi : 10.1111/j.1745-7599.2012.00699.x.
  12. P. Giraux & A. Sirigu. (2003). Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage, 20(suppl 1), 107-111.
  13. S. W. Lee, K. J. Lee & C. H. Song. (2011). Effects of visual feedback-based balance training on balance in elderly fallers. Journal of muscle and joint health, 18(1), 16-27.
  14. N. M. Kapadia et al. (2013). Functional electrical stimulation therapy for recovery of reaching and grasping in severe chronic pediatric stroke patient. Journal of Child Neurology, 29(4), 493-502. Doi : 10.1177/0883073813484088.
  15. D. H. Kim & K. H. Kim. (2018). A Convergence Study on the effects of functional electrical stimulation with mirror therapy on balance and gait ability in chronic stroke patients. Journal of Digital Convergence, 9(10), 109-120,
  16. J. Cauraugh, K. Light, S. Kim, M. Thigpen & A. Behrman. (2000). Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-trigered neuromuscular stimulation. Stroke, 31(6), 1360-1364. https://doi.org/10.1161/01.STR.31.6.1360
  17. Y. Yang, Q. Zhao, Y. Zhang, Q. Wu, X. Jiang & G. Cheng. (2018). Effect of mirror therapy on recovery of stroke survivors: a systematic review nd network Meta-analysis. Neuroscience, 390(15), 317. Doi : 10.1016/j.neuroscience.2018.06.044.
  18. K. H. Kim, S. M. Lee, D. H. Kim & K. S. Kim. (2015). The Effects of ankle joint muscle strengthening and proprioceptive exercise programs accompanied by functional electrical stimulation on stroke patients' balance. Journal of Physical Therapy Science, 27(9), 2971-975. Doi : 10.1589/jpts.27.2971.
  19. M. L. Latash, S. S. Ferreira, S. A. Wieczorek & M. Duarte. (2003). Movement sway: changes in postural sway during voluntary shifts of the center of pressure. Experimental brain research, 150(3), 314-324. https://doi.org/10.1007/s00221-003-1419-3
  20. K. O. Berg, S. L. Wood Dauphinee, J. I. Williams & B. Maki. (1992). Measuring balance in the elderly: validation of an instrument. Canadian Journal of Public Health, 41(6), 304-311.
  21. P. W. Duncan, D. K. Weiner, J. Chandler & S. Studenski. (1990). Functional reach: a new clinical measure of balance. Journal of gerontology, 45(6), 192-197.
  22. C. M. Dean, C. L. Richards & F. Malouin. (2000). Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Archives Physical Medicine Rehabilitation, 81(4), 409-417. https://doi.org/10.1053/mr.2000.3839
  23. R. K. Tong, M. F. Ng, L. S. Li & E. F. So. (2006). Gait training of patients after stroke using an electromechanical gait trainer combined with simultaneous functional electrical stimulation. Physical Therapy, 86(9), 1282-1294. https://doi.org/10.2522/ptj.20050183
  24. C. Krishnan, D. Kotsapouikis, Y. Y. Dhaher & W. Z. Rymer. (2013). Reducing robotic guidance during robot-assisted gait training improves gait function: a case report on a stroke survivor. Archives of physical medicine and rehabilitation, 94(6), 1202-1206. https://doi.org/10.1016/j.apmr.2012.11.016
  25. S. J. Park, T. H. Kim, J. H. Go & P. S. Youn. (2017). The impact of convergence balance training and taping on spasticity and balance ability in patients with chronic stroke. Journal of Digital Convergence, 15(7), 297-306. https://doi.org/10.14400/JDC.2017.15.7.297
  26. T. G. Nam & J. H. Lee. (2017). The effect of unstable plate on the ankle joint displacement and dynamic balance ability of female college students wearing high-heeled shoes. Journal of Convergence for Information Technology, 7(5), 31-38. https://doi.org/10.22156/CS4SMB.2017.7.5.031
  27. S. Y. Kim & I. Hong. Kim. (2018). Factors convergent Influencing rehabilitation motivation among stroke patients. Journal of Digital Convergence, 15(9), 375-384. https://doi.org/10.14400/JDC.2017.15.9.375
  28. J. M. Kim, B. I. Yang & M. K. Lee. (2010). The effect of action observational physical training on manual dexterity in stroke patients. Journal of Physical therapy korea, 17(2), 17-24.
  29. K. Zentgraf et al. (2005). Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage, 1(26), 662-672. https://doi.org/10.1016/j.neuroimage.2005.02.015
  30. Z. Pavare, I. Garuta, T. Ananjeva & A. Smolovs. (2015). Gait rehabilitation of post-stroke patients by treadmill gait training with visual feedback. Gait and Posture, 1(42), S69-S70.
  31. H. Aizawa, M. Inase, H. Mushiake, K. Shima & J Tanji. (1991). Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Experimental Brain Research, 84(3), 668-671.
  32. G. Bartur, H. Pratt, R. Dickstein, S. Frenkel-Toledo, A. Geva & N. Soroker. (2015). Electrophysiological manifestations of mirror visual feedback during manual movement. Brain research, 1606, 113-124. Doi : 10.1016/j.brainres.2015.02.029.
  33. H. Thieme, J. Mehrholz, M. Pohl, J. Behrens & C. Dohle. (2013). Mirror therapy for improving motor function after stroke. Stroke. 44(1), e1-2. https://doi.org/10.1161/STROKEAHA.112.673087
  34. D. Lee, G. Lee & J. Jeong. (2016). Mirror therapy with neuromuscular electrical stimulation for improving motor function of stroke survivors: a pilot randomized clinical study. Technology and health care, 27(4), 503-511. Doi : 10.3233/THC-161144.
  35. J. Liepert, H. Bauder, W. H. Miltner, E. Taub & C. Weiller. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31(6), 1210-1216. https://doi.org/10.1161/01.str.31.6.1210
  36. C. K. Thomas, R. S. Johansson & B. Bigland-Ritchie. (2002). Incidence of F waves in single human thenar motor units. Muscle Nerve, 25(1), 77-82. https://doi.org/10.1002/mus.10005