DOI QR코드

DOI QR Code

Laboratory Experiments for Evaluating Necking Defects in Bored Piles Embedded in Sandy Soils Using Electromagnetic Waves

전자기파를 이용한 모래 지반에 설치된 현장타설말뚝의 네킹 결함 평가를 위한 실내 모형실험

  • Lee, Jong-Sub (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Kim, Youngdae (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Yu, Jung-Doung (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 김영대 (고려대학교 건축사회환경공학부) ;
  • 유정동 (고려대학교 건축사회환경공학부)
  • Received : 2020.04.16
  • Accepted : 2020.05.25
  • Published : 2020.05.31

Abstract

Studies on nondestructive evaluation methods using electromagnetic waves have been commonly conducted to evaluate necking defects in bored piles. However, the propagation of electromagnetic waves are affected by water contents of surrounding materials. This study aims to investigate a suitability of electromagnetic waves for evaluating necking defects in bored piles embedded in sandy soils through laboratory experiments. Laboratory experiments are performed with a model pile having a necking defect. The diameter and length of model pile are 600 mm and 1 m, respectively, and the model pile is embedded in sandy soils with different water contents of 10%, 20%, and 30%. For the propagation of electromagnetic waves, a transmission line is configured in reinforcement cage using an electrical wire. The generation and detection of electromagnetic waves are conducted using a time domain reflectometer. Experimental results show that the peak amplitude of electromagnetic waves reflected at the necking defect decreases with an increase in the water content in sandy soils. In addition, the velocity of electromagnetic waves reflected from the toe of the model pile decreases win an increase in the water content. However, estimated locations of the necking defects are almost the same to that of the actual location of the necking defect. This study demonstrates that electromagnetic waves may be an effective method for evaluating necking defects in bored piles embedded in sandy soils

최근 현장타설말뚝의 네킹 결함을 평가하기 위한 비파괴평가기법으로 전자기파를 적용하는 연구가 활발히 진행되고 있다. 하지만, 전자기파의 전파는 주변 매질의 함수비에 큰 영향을 받는다. 본 연구에서는 서로 다른 함수비의 모래 지반에 설치되어 있는 현장타설말뚝에 발생한 네킹 결함을 전자기파를 이용하여 평가할 수 있는 방법을 실내실험을 통해 고찰하고자 한다. 실내실험을 위해 네킹 결함이 있는 직경 600mm, 길이 1m의 모형 말뚝을 제작하였으며, 건조된 모래와 함수비가 10%, 20%, 30%인 모래에 설치된 조건에서 실험을 수행하였다. 전자기파의 전파를 위해 철근망에 전선을 설치하여 전송선로를 구성하였다. 전자기파의 송신과 수신을 위해 time domain reflectometer를 사용하였다. 실험결과, 모형 말뚝의 두부와 선단부뿐만 아니라 네킹 결함부에서도 전자기파의 반사 신호가 뚜렷이 나타났다. 모래의 함수비가 증가할수록 네킹 결함부에서 반사되는 전자기파 신호의 최대 진폭이 감소하였으며, 모형 말뚝 선단에서 반사된 전자기파의 속도는 네킹 결함 내의 모래의 함수비가 증가할수록 감소하였다. 하지만, 전자기파의 도달시간과 속도를 이용하여 산정된 네킹 결함의 위치와 실제 네킹 결함의 위치가 거의 같았다. 본 연구는 전자기파가 모래 지반에 설치된 현장타설말뚝의 네킹 결함을 평가하는데 유용하게 활용될 수 있음을 보여준다.

Keywords

References

  1. Alberts, L., Bohlmann, M., and Meiring, G.L. (1966), The Influence of Low Moisture Content on the Conductivities of a Granular Substance Such as Sand, British Journal of Applied Physics, Vol.17, No.7, pp.951-955. https://doi.org/10.1088/0508-3443/17/7/314
  2. Amir, J.M. and Amir, E.I. (2009), Capabilities and Limitations of Cross Hole Ultrasonic Testing of Piles, International Foundation Congress and Equipment Expo, Orlando, Florida, GSP 185, pp. 536-543.
  3. O'Neill M.W. (1991), Construction Practices and Defects in Drilled Shafts, Transportation Research Record, Vol.1331, pp.6-14.
  4. Rausche, F. (2004), Non-destructive evaluation of deep foundations, Proceedings: Fifth International Conference on Case Histories in Geotechnical Engineering, New York, OSP-5.
  5. White, B., Nagy, M., and Allin, R. (2008), Comparing Cross-hole Sonic Logging and Low-strain Integrity Testing Results, Proceedings of the Eighth International Conference on the Application of Stress Wave Theory to Piles, Lisbon, Portugal, pp.471-476.
  6. Gassman, S.L. and Finno, R.J. (2000), Cutoff Frequencies for Impulse Response Tests of Existing Foundations, Journal of Performance of Constructed Facilities, Vol.14, No.1, pp.11-21. https://doi.org/10.1061/(ASCE)0887-3828(2000)14:1(11)
  7. Jung, G., Cho, S.M., Kim, H.J., and Jung, J.H. (2003), Improvements of the Specification for Cross-hole Sonic Logging in the Pile Integrity Test, Korean Society of Civil Engineers Conference, Daegu, Korea, pp.4060-4063.
  8. Lee, J.S., Song, J.U., Hong, W.T., and Yu, J.D. (2018), Application of Time Domain Reflectometer for Detecting Necking Defects in Bored Piles, NDT and E International, Vol.100, pp.132-141. https://doi.org/10.1016/j.ndteint.2018.09.006
  9. Lee, J.S. and Yu, J.D. (2019), Non-destructive Method for Evaluating Grouted Ratio of Soil Nail Using Electromagnetic Wave, Journal of Nondestructive Evaluation, Vol.38, No.41, pp.1-15. https://doi.org/10.1007/s10921-018-0529-6
  10. Liao, S.T. (1994), Nondestructive testing of piles, Ph.D. Thesis, University of Texas at Austin, Texas.
  11. Ni, S.H., Lehmann, L., Charng J.J., and Lo, K.F. (2006), Lowstrain Integrity Testing of Drilled Piles with High Slenderness Ratio, Computers and Geotechnics, Vol.33, No.6-7, pp.283-293. https://doi.org/10.1016/j.compgeo.2006.08.001
  12. Maxwell, J.C. (1873), A treatise on electricity and magnetism. Clarendon press, Oxford.
  13. Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., and Friedman, S.P. (2003), A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry, Vadose Zone Journal, Vol.2, No.4, pp.444-475. https://doi.org/10.2136/vzj2003.4440
  14. Yu, J.D., Kim, K.H., and Lee, J.S. (2018), Nondestructive Health Monitoring of Soil Nails Using Electromagnetic Waves, Canadian Geotechnical Journal, Vol.55, No.1, pp.79-89. https://doi.org/10.1139/cgj-2017-0043
  15. Yu, J.D., Lee, J.S., and Yoon, H.K. (2019), Circular Time-domain Reflectometry System for Monitoring Bridge Scour Depth, Marine Georesources & Geotechnology, Vol.38, No.3, pp.312-321. https://doi.org/10.1080/1064119x.2019.1571131