DOI QR코드

DOI QR Code

수중 네트워크의 링크 적응을 위한 기계 학습 기반 MCS 예측 모델 적용 방안

Machine Learning-based MCS Prediction Models for Link Adaptation in Underwater Networks

  • 변정훈 (충북대학교 소프트웨어학과) ;
  • 조오현 (충북대학교 소프트웨어학과)
  • Byun, JungHun (Department of Computer Science, Chungbuk University) ;
  • Jo, Ohyun (Department of Computer Science, Chungbuk University)
  • 투고 : 2020.03.26
  • 심사 : 2020.05.20
  • 발행 : 2020.05.28

초록

본 논문은 수중 IoT 네트워크에서 센서의 전력 소비를 줄이고 네트워크의 처리량을 향상하는 수중 링크적응 방법을 제안한다. 링크 적응 방법의 하나인 AMC(Adaptive Modulation and Coding) 기술은 SNR(Signal Noise Rate)과 BER(Bit Error Rate)의 강한 상관관계를 이용하지만, 수중에 바로 적용하는 것은 어렵다. 따라서 수중 환경에 적합한 머신러닝 기반의 AMC 기술을 제안한다. 제안하는 MCS(Modulation Coding and Scheme) 예측 모델은 수중 채널 환경에서 목표 BER 값을 달성하기 위한 통신 방법을 예측한다. 예측된 통신 방법을 실제 수중 무선 통신에서 적용하는 것은 현실적으로 어렵기 때문에 본 논문에서는 높은 정확도의 BER 예측 모델을 사용해 MCS 예측 모델의 성능을 확인한다. 결과적으로 제안하는 AMC 기술은 통신 성공 확률을 올림으로써 머신러닝의 적용 가능성을 확인시켰다.

This paper proposes a link adaptation method for Underwater Internet of Things (IoT), which reduces power consumption of sensor nodes and improves the throughput of network in underwater IoT network. Adaptive Modulation and Coding (AMC) technique is one of link adaptation methods. AMC uses the strong correlation between Signal Noise Rate (SNR) and Bit Error Rate (BER), but it is difficult to apply in underwater IoT as it is. Therefore, we propose the machine learning based AMC technique for underwater environments. The proposed Modulation Coding and Scheme (MCS) prediction model predicts transmission method to achieve target BER value in underwater channel environment. It is realistically difficult to apply the predicted transmission method in real underwater communication in reality. Thus, this paper uses the high accuracy BER prediction model to measure the performance of MCS prediction model. Consequently, the proposed AMC technique confirmed the applicability of machine learning by increase the probability of communication success.

키워드

참고문헌

  1. X. Lurton. (2004). An introduction to underwater acoustics.
  2. A. Baggeroer. (1984). Acoustic telemetry-an overview. IEEE Journal of oceanic engineering, 9(4), 229-235. DOI : 10.1109/joe.1984.1145629
  3. I. F. Akyildiz, D. Pompili & T. Melodia. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3-8. DOI : 10.1145/1121776.1121779
  4. I. F. Akyildiz, D. Pompili & T. Melodia. (2005). Underwater acoustic sensor networks: research challenges. Ad hoc networks, 3(3), 257-279. DOI : 10.1016/j.adhoc.2005.01.004
  5. J. Heidemann, W. Ye, J. Wills, A. Syed & Y. Li. (2006, April). Research challenges and applications for underwater sensor networking. In IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006. (Vol. 1, pp. 228-235). IEEE. DOI : 10.1109/wcnc.2006.1683469
  6. M. K. Park & V. Rodoplu. (2007). UWAN-MAC: An energy-efficient MAC protocol for underwater acoustic wireless sensor networks. IEEE journal of oceanic engineering, 32(3), 710-720. DOI : 10.1109/joe.2007.899277
  7. P. Xie & J. H. Cui. (2007, August). R-MAC: An energy-efficient MAC protocol for underwater sensor networks. In International Conference on Wireless Algorithms, Systems and Applications (WASA 2007) (pp. 187-198). IEEE. DOI : 10.1109/wasa.2007.37
  8. A. Goldsmith. (2005). Wireless communications. Cambridge university press.
  9. S. Verdú. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319-1343. DOI : 10.1109/tit.2002.1003824
  10. F. Meshkati, H. V. Poor, S. C. Schwartz & N. B. Mandayam. (2005). An energy-efficient approach to power control and receiver design in wireless data networks. IEEE transactions on communications, 53(11), 1885-1894. DOI : 10.1109/tcomm.2005.858695
  11. S. Cui, A. J. Goldsmith & A. Bahai. (2005). Energy-constrained modulation optimization. IEEE transactions on wireless communications, 4(5), 2349-2360. DOI : 10.1109/twc.2005.853882
  12. L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi & J. H. Cui. (2014). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 40(2), 327-336. https://doi.org/10.1109/JOE.2014.2323365
  13. H. S. Lee, J. W. Jung, C. U. Baek, A. H. Lee & W. J. Kim. (2019, July). Adaptive Modulation and Coding for Underwater Acoustic Communication. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 54-56). IEEE. DOI : 10.1109/icufn.2019.8806054
  14. K. Pelekanakis, L. Cazzanti, G. Zappa & J. Alves. (2016, August). Decision tree-based adaptive modulation for underwater acoustic communications. In 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (pp. 1-5). IEEE. DOI : 10.1109/ucomms.2016.7583461
  15. J. Lin, W. Su, L. Xiao & X. Jiang. (2018, December). Adaptive modulation switching strategy based on Q-learning for underwater acoustic communication channel. In Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems (pp. 1-5). DOI : 10.1145/3291940.3291976
  16. W. Su, J. Lin, K. Chen, L. Xiao & C. En. (2019). Reinforcement Learning-Based Adaptive Modulation and Coding for Efficient Underwater Communications. IEEE Access, 7, 67539-67550. DOI : 10.1109/access.2019.2918506
  17. J. H. Byun, Y. H. Cho, T. H. Im, H. L. Ko, K. S. Shin & O. H. Jo. (2020). Iterative Learning for Reliable Underwater Link Adaptation. Thirty-Fourth AAAI Conference on Artificial Intelligence. New York : AAAI.