참고문헌
- X. Lurton. (2004). An introduction to underwater acoustics.
- A. Baggeroer. (1984). Acoustic telemetry-an overview. IEEE Journal of oceanic engineering, 9(4), 229-235. DOI : 10.1109/joe.1984.1145629
- I. F. Akyildiz, D. Pompili & T. Melodia. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3-8. DOI : 10.1145/1121776.1121779
- I. F. Akyildiz, D. Pompili & T. Melodia. (2005). Underwater acoustic sensor networks: research challenges. Ad hoc networks, 3(3), 257-279. DOI : 10.1016/j.adhoc.2005.01.004
- J. Heidemann, W. Ye, J. Wills, A. Syed & Y. Li. (2006, April). Research challenges and applications for underwater sensor networking. In IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006. (Vol. 1, pp. 228-235). IEEE. DOI : 10.1109/wcnc.2006.1683469
- M. K. Park & V. Rodoplu. (2007). UWAN-MAC: An energy-efficient MAC protocol for underwater acoustic wireless sensor networks. IEEE journal of oceanic engineering, 32(3), 710-720. DOI : 10.1109/joe.2007.899277
- P. Xie & J. H. Cui. (2007, August). R-MAC: An energy-efficient MAC protocol for underwater sensor networks. In International Conference on Wireless Algorithms, Systems and Applications (WASA 2007) (pp. 187-198). IEEE. DOI : 10.1109/wasa.2007.37
- A. Goldsmith. (2005). Wireless communications. Cambridge university press.
- S. Verdú. (2002). Spectral efficiency in the wideband regime. IEEE Transactions on Information Theory, 48(6), 1319-1343. DOI : 10.1109/tit.2002.1003824
- F. Meshkati, H. V. Poor, S. C. Schwartz & N. B. Mandayam. (2005). An energy-efficient approach to power control and receiver design in wireless data networks. IEEE transactions on communications, 53(11), 1885-1894. DOI : 10.1109/tcomm.2005.858695
- S. Cui, A. J. Goldsmith & A. Bahai. (2005). Energy-constrained modulation optimization. IEEE transactions on wireless communications, 4(5), 2349-2360. DOI : 10.1109/twc.2005.853882
- L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi & J. H. Cui. (2014). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 40(2), 327-336. https://doi.org/10.1109/JOE.2014.2323365
- H. S. Lee, J. W. Jung, C. U. Baek, A. H. Lee & W. J. Kim. (2019, July). Adaptive Modulation and Coding for Underwater Acoustic Communication. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 54-56). IEEE. DOI : 10.1109/icufn.2019.8806054
- K. Pelekanakis, L. Cazzanti, G. Zappa & J. Alves. (2016, August). Decision tree-based adaptive modulation for underwater acoustic communications. In 2016 IEEE Third Underwater Communications and Networking Conference (UComms) (pp. 1-5). IEEE. DOI : 10.1109/ucomms.2016.7583461
- J. Lin, W. Su, L. Xiao & X. Jiang. (2018, December). Adaptive modulation switching strategy based on Q-learning for underwater acoustic communication channel. In Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems (pp. 1-5). DOI : 10.1145/3291940.3291976
- W. Su, J. Lin, K. Chen, L. Xiao & C. En. (2019). Reinforcement Learning-Based Adaptive Modulation and Coding for Efficient Underwater Communications. IEEE Access, 7, 67539-67550. DOI : 10.1109/access.2019.2918506
- J. H. Byun, Y. H. Cho, T. H. Im, H. L. Ko, K. S. Shin & O. H. Jo. (2020). Iterative Learning for Reliable Underwater Link Adaptation. Thirty-Fourth AAAI Conference on Artificial Intelligence. New York : AAAI.