DOI QR코드

DOI QR Code

Shear Strength Model for HPFRCC Beams with Main Longitudinal Tensile Reinforcements

주인장 철근을 가진 HPFRCC 보 부재 전단 강도 예측 모델

  • Received : 2020.02.27
  • Accepted : 2020.04.23
  • Published : 2020.04.30

Abstract

Recently, many studies have been conducted on the structural behavior of HPFRCC, but most of the studies focused on the flexural behavior while studies on the shear behavior are limited. In this study, a model has been developed to reasonably predict the shear strength of a HPFRCC beam without stirrups. To develop the model, a HPFRCC beam was simply idealized with upper & lower chords resisting bending moment and a web shear element resisting shear forces. Then, taking into the account of the tensile behavior of HPFRCC, the main diagonal compressive strut angle and shear stress of the web shear element were evaluated on shear failure. Then, the shear strength of the HPFRCC beam could be evaluated. For the verification of the proposed model, the predictions by the proposed model were compared with the test results of 48 HPFRCC beams exhibiting shear failure. The results showed that the proposed model reasonably predicted the actual shear strength with an average of 1.045 and CoV of 0.125. This study are expected to be useful for related researches and design of members or structures to which HPFRCC is applied.

최근 HPFRCC의 구조 거동에 대한 연구가 많이 이루어져 왔으나, 휨 거동에 대한 연구가 주로 수행된 반면, 전단 거동에 대한 연구는 많이 부족한 상황이다. 이 연구에서는 전단 철근이 없는 HPFRCC 보 부재의 전단 강도를 합리적으로 예측할 수 있는 모델을 개발하였다. 모델을 개발하기 위해 HPFRCC 보 부재를 휨 모멘트에 저항하는 상·하현재와 전단력에 저항하는 복부 전단 요소로 간단히 이상화하였다. 이후 HPFRCC의 인장 거동 특성을 바탕으로 전단 파괴 시 복부 전단 요소의 주압축대 기울기 및 전단 응력을 산정하였으며, 이로부터 HPFRCC 보부재의 전단 강도를 산정할 수 있는 모델을 제안하였다. 제안 모델의 검증을 위해 기존의 전단 파괴된 48개의 HPFRCC 보 부재의 실험 결과와 비교하였다. 실험과 비교한 결과, 제안 모델이 실제 전단 강도를 평균 1.045, 변동계수 0.125로서 상당히 합리적으로 예측하는 것으로 나타났다. 이 연구의 주요 내용은 향후 HPFRCC가 적용되는 부재 또는 구조물에 대한 관련 연구 및 설계에 유용할 것으로 기대된다.

Keywords

References

  1. AASHTO (2017), AASHTO LRFD Bridge Design Specifications, 8th ed. Washington, DC: AASHTO.
  2. CAN/CSA-A23.3-14 (2014), Design of Concrete Structures, Rexdale: Canadian Standards Association.
  3. CEB-FIP (2013), CEB-FIP Model Code 2010 , International Federation for Structural Concrete (fib), Ernst & Sohn.
  4. Choi, S.-W., Choi, J., Lee, S.-C. (2019), Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete, Materials, 12(15), 2399. https://doi.org/10.3390/ma12152399
  5. Deluce, J., Lee, S.-C., Vecchio, F.-J. (2014), Crack Model for Steel Fiber-Reinforced Concrete Members Containing Conventional Reinforcement, ACI Structural Journal, 111(1), 93-102.
  6. Eurocode 2 (2004), Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels, Belgium.
  7. Jude, E. O., Oh, C.-H., Lee, S.-C. (2018), Single Web Shear Element Model for Shear Strength of RC Beams with Stirrups, International Journal of Concrtete Structures and Materials, 12(3), 301-313.
  8. Kim, D.-J., Kim, W., White, R. N. (1998), Prediction of Reinforcement Tension Produced by Arch Atcion in RC Beams, Journal of Structural Engineering, ASCE, 124(6), 611-622. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(611)
  9. Kim, W., Jeong, J.-P. (2011), Decoupling of Arch Action in Shear-Critical Refinforced Concrete Beam, ACI Structural Journal, 108(4), 395-404.
  10. Korea Institute of Bridge and Structural Engineers & Korea Bridge Design and Engineering Research Center (2015), Manual of Korea Bridge Design Code (Limit State Design Method), Korea, Kimoondang Publishing Company (in Korean).
  11. Lee, S.-C., Cho, J.-Y., Oh, B.-H. (2010a), Shear Behavior of Large-Scale Post-Tensioned Girders with Small Shear Span-Depth Ratio, ACI Structural Journal, 107(2), 137-145.
  12. Lee, S.-C., Kim, H.-B., Joh, C. (2017), Inverse Analysis of UHPFRC Beams with a Notch to Evaluate Tensile Behavior, Advances in Materials Science and Engineering, 2017, 1-10.
  13. Lee, S.-C., Kim, J.-H., Cho, J.-Y., Shin, K.-J. (2010b), Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC), KCI Journal, 22(6), 859-866 (in Korean).
  14. Lee, S.-C., Song, T.-H., Shin, K.-J. (2015), Shear Strength of HPFRCC Beams with Longitudinal Reinforcement, Materials Research Innovations, 19(S8), 277-280.
  15. Lee, S.-C., Oh, J.-H., Cho, J.-Y. (2016), Fiber Efficiency in SFRC Members Subjected to Uniaxial Tension, Construction and Building Materials, 113, 479-487. https://doi.org/10.1016/j.conbuildmat.2016.03.076
  16. Naaman, A. E., Reinhardt, H. W. (1995), Characterization of High Performance Fiber Reinforced Cement Composites - HPFRCC, in Proceedings of HPFRCC 2, 1-23.
  17. Shimizu, K., Kanakubo, T., Kanda, T., Nagai, S. (2004), Shear Beahvior of Steel Reinforced PVA-ECC Beams, 13th World Conference on Earthquake Engineering, Vancouver, B.G., Canada.
  18. Shin, K.-J., Jang, K.-H., Choi, Y.-C., Lee, S.-C. (2015), Flexural Behavior of HPFRCC Members with Inhomogeneous Material Properties, Materials, 8, 1934-1950. https://doi.org/10.3390/ma8041934
  19. Shin, K.-J., Kim, J.-H., Cho, J.-Y., Lee, S.-C. (2011), Flexural Behavior of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) Beam with a Reinforcing Bar, KCI Journal, 23(2), 169-176 (in Korean).
  20. Shin, K.-J., Lee, S.-C., Kim, Y.-Y. (2019), HIgh Ductile Fiber Reinforced Concrete with Micro Fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 92-98 (in Korean).
  21. Vecchio, F. J., Collins, M. P. (1986), The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI Journal, 83(2), 219.231.
  22. Vecchio, F. J., Collins, M. P. (1988), Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using the Modified Compression Field Theory, ACI Structural Journal, 85(3), 258-268.
  23. Vecchio, F. J., Collins, M. P. (1993), Compression Response of Cracked Reinforced Concrete, Journal of Structural Engineering, ASCE., 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  24. Yuh, O.-K., Bae, B.-I. (2019), Evaluation of Flexural Strength and Ductility of Hybrid Fiber Reinforced UHSC Flexural Members, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 61-69 (in Korean).