DOI QR코드

DOI QR Code

패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer

  • 투고 : 2019.12.26
  • 심사 : 2020.01.06
  • 발행 : 2020.02.29

초록

본 연구에서는 패류 껍질의 경계조건을 모사한 고연성 시멘트 복합재료의 휨 성능을 평가하였다. 패류 껍질층 경계면 구조를 모방하여 프리캐스트 형식으로 제조된 패널 사이를 후 타설 HDCC로 충전한 실험체와 PE-mesh를 HDCC층의 경계면에 배치한 실험체 등 2가지 경계면 특성을 고려하여 제작한 4종류 실험체의 휨 성능을 평가하였다. 패류 껍질의 경계조건을 모사한 고연성 시멘트 복합재료의 휨 성능 평가결과 일반적인 휨 시험체 대비 층상화 단면을 적용한 모든 실험체의 연성이 증가하였다. 특히 PE-mesh를 삽입하여 층상화한 방법이 가장 우수한 연성을 나타내는 것을 확인하였다. 이는 삽입된 PE-mesh가 층을 분리하는 경계면 역할을 하고, PE-mesh 체눈 내의 각주형 HDCC는 층과 층사이의 부착을 견고히 하는 역할을 하였기 때문이라고 사료된다.

In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.

키워드

참고문헌

  1. Choi, Y. C., Choi, J. S., and Cho, Y. W., (2011), Biomimetic Functional Materials: Find a Solution from Mother Nature, Polymer Science and Technology, The Polymer Society of Korea, Vol. 22, No. 5, pp.460-466.
  2. Her, K. A., and Kim, C. K., (2010), A study on the Compositional method of Architectural applied of Biomimicry, Proceedings of the Korean Institute of Interior Design, Korean Institute of Interior Design, Vol. 12, No. 1, pp. 132-135.
  3. Kim, B. Y., (2015), Fabrication of bio-inspired composites that mimic structure of nacre and its characterization, Master's thesis, Hanyang University, pp.5-6.
  4. Haupt, K., and Mosbach, K., (2000), Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors, Chem, Rev., Vol.100, pp. 2495-2504. https://doi.org/10.1021/cr990099w
  5. Sarikaya, M., (1994), An introduction to biomimetics: A structural viewpoint, Micro. Res. Tech., Vol.27, pp. 360-375. https://doi.org/10.1002/jemt.1070270503
  6. Kakisawa, H., and Sumitomo, T., (2011),The toughening mechanism of nacre and structural materials inspired by nacre, Sci. Technol. Adv. Mater., Vol.12, No.6, 064710. https://doi.org/10.1088/1468-6996/12/6/064710
  7. Kim, J. K., Kim, J. S., Ha, G. J., and Kim, Y. Y., (2007), Tensile and Fiber Dispersion Performance of ECC Produced with Slag Particles, Cement and Concrete Research, Vol. 37, No. 7, pp. 1096-1105. https://doi.org/10.1016/j.cemconres.2007.04.006
  8. Choi, J. I., Park, S., Bang, B. Y., and Kim, Y. Y., (2018), Tensile Properties of Polyethylene Fiber-Reinforced Highly Ductile Composite with Compressive Strength of 100 MPa Class, Journal of the Korea Concrete institute, Korea Concrete institute, Vol. 30, No. 5, pp. 497-503. https://doi.org/10.4334/JKCI.2018.30.5.497
  9. Japan Society of Civil Engineers (2008): Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with multiple fine cracks (HPFRCC), Concrete Engineering Series, Vol. Concrete L.
  10. Kwon, K. S., Bang, J. W., and Kim, Y. Y., (2018), Flexural performance of Multi-layered Fiber-reinforced Cement Composites with Diverse Interface Shape, Journal of the Korea Concrete institute, Korea Concrete institute, Vol. 30, No. 4, pp. 429-435. https://doi.org/10.4334/JKCI.2018.30.4.429
  11. Nelson, P. K., Li, V. C., and Kamada, C., (2002), Fracture toughness of microfiber reinforced cement composites, Journal of Materials in Civil Engineering, American Society of Civil Engineers, Vol.98, No.5, pp. 384-391. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(384)
  12. Lee, B.Y., Han, B.C., Cho, C.G., and Kim, Y.Y., (2012), Flexural Performance and Fiber Distribution of an Extruded DFRCC Panel, Computers and Concrete, Vol. 10, No. 2, pp. 105-119. https://doi.org/10.12989/cac.2012.10.2.105
  13. Hyun, J.H., Lee, B.Y., and Kim, Y.Y., (2018), Composite Properties and Micromechanical Analysis of Highly Ductile Cement Composite Incorporating Limestone Powder, Applied Sciences, Vol.8, Issue 2, 151; doi:10.3390/app8020151, 10 pages.
  14. Shin, K. J., Lee, S.C., and Kim, Y.Y., (2019), High Ductile Fiber Reinforced Concrete with Micro Fibers, Journal of the Korea Institute for Structural Maintenance and Inspection, Korea Institute for Structural Maintenance and Inspection, Vol. 23, No. 2, pp. 92-98.
  15. Soltan, D. G., Ranande, R., and Li, V. C., (2014), A Bio-inspired Cementitious for High Energy Absorption in Infrastructural Applications, Blucher Material Science Proceedings, MM&FGM 2014, Vol. 1, No. 1.