DOI QR코드

DOI QR Code

iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe

  • 전법규 (부산대학교 산학협력단 지진방재연구센터) ;
  • 장성진 (부산대학교 산학협력단 지진방재연구센터) ;
  • 김재봉 (부산대학교 산학협력단 지진방재연구센터) ;
  • 주부석 (경희대학교 사회기반시스템공학과)
  • 투고 : 2019.09.02
  • 심사 : 2019.12.23
  • 발행 : 2020.02.29

초록

우리나라의 연평균 지진발생 횟수는 꾸준히 증가하는 추세이다. 최근경주와 포항에서 규모 5를 초과하는 지진이 발생하여 상수도관의 피해가 다수 보고된 바 있다. 따라서 국내에서도 상수도관의 지진에 대한 대비가 필요 할 것으로 판단된다. 상수도관은 상수도 공급시스템 에 있어 혈관과도 같은 중요한 시설로서 다양한 규격과 재질의 배관으로 구성된다. 그러므로 지진에 의한 상수도관의 손상은 식수공급, 화재진압 등의 문제를 일으키게 되며, 인명 및 재산피해를 유발하게 된다. 하지만 국내에서는 시험 검증 및 경험에 의해 매립상수도관의 내진 성능이 평가된 예를 찾아보기 어렵다. 지진에 의한 상수도관의 손상은 액상화와 단층과 같은 지반의 변위지배적인 거동으로 인하여 발생한다. 지진에 의한 상수도관의 주된 파손은 배관 이음부에 집중되며 특히 직경 200mm 이하 배관이 위험한 것으로 조사되었다. 따라서 본 연구에서는 호칭 150mm의 클램프로 고정된 이음을 가지는 iPVC 매립 상수도관에 대하여 시험적인 접근으로 내진 성능 및 내침하 성능을 평가 하였다.

Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.

키워드

참고문헌

  1. Discovering Future World Events Through Scripture, Significant Earthquakes 5.0+ since the Richter scale was developed in 1935: http://trackingbibleprophecy.org/birthpangs_earthquakes.php.
  2. Ministry of the Interior and Safety. (2017), Pohang Earthquake White Paper.
  3. Eem, S. H., Yang, B., & Jeon, H. (2018), Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes. Journal of the Earthquake Engineering Society of Korea, 22(3), 121-128. https://doi.org/10.5000/EESK.2018.22.3.121
  4. Ministry of Public Safety and Security. (2019), Report of 9.12 Earthquake Occurrence and Response, Central Disaster and Safety Countermeasures Headquarters.
  5. JoongAng Ilbo. (2017), Pohang Earthquake, 80 people casualties, 9,560 cases of damage to facilities: https://news.joins.com/article/22133798.
  6. Dave H., Chandan V., Agnes H. J. L., Ameya B. P., (2016) Development, Evaluation, and Installation of a New Improved PVC (iPVC) Pipe for Water Applications, Kansas City.
  7. Ministry of the Interior and Safety. (2017), Common Application of Seismic Design Criteria.
  8. Korea Water and Wastewater Association. (2017), A Fundamental Study on the Improvement of Seismic Design Criteria for Major Water and Sewage, Ministry of Environment.
  9. Park D. S., Ha I. S., Lim J. Y. and Jung W. S. (2006) Case Report on Earthquake Damage of Waterworks, K-Water.
  10. Cornell University. (2009), NEESR-SG Final Report, Rensselaer Polytechnic Institute and The Sciencenter Discovery Center.
  11. Berger B. A., Wham B. P., O'Rourke T. D., Stewart H. E., (2018), Direct Tension and Cyclic Testing of JFE SPF Wave Feature, School of Civil and Environmental Engineering, Cornell University, Hollister Hall, Ithca, NY 14853.
  12. Nobuhiro H., Hayato N., Brad P. W., and Thomas D. O'R. (2017), Performance Test of Steel Pipe for Crossing Fault in United States, The 10th JWWA/WRF/CTWWA Water System Seismic Conference, Taiwan.
  13. ISO 16134. (2006), Earthquake- and subsidence-resistant design of ductile iron pipelines
  14. Korea Water Resources Corporation. (2006), Report on Earthquake Damage of Waterworks.
  15. Masakatsu M. (2015), Damage Analysis of Water Supply Facilities in the 2011 Great East Japan Earthquake and Tsunami, Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, Chengdu, China.
  16. Donald B. (2013), Understanding the Seismic Vulnerability of Water Systems.
  17. Kim, S.W., Choi, H.S., Jeon, B.G., Hahm, D.G. (2019), Low-cycle fatigue behaviors of the elbow in a nuclear power plant piping system using the moment and deformation angle, Engineering Failure Analysis, 96, 348-361. https://doi.org/10.1016/j.engfailanal.2018.10.021
  18. Pariya-Ekkasut C., Berger B.A., Wham B. P., Stewart H. E., O'Rourke T.D. and Bond T.K. , (2017), Four-Point Bending Testing of 6-in. (150-mm), 12-in. (300-mm), and 16-in. (400-mm)-Diameter Kubota Earthquake Resistant Ductile Iron Pipes, School of Civil and Environmental Engineering, Cornell University, Hollister Hall, Ithca, NY 14853.
  19. Keita O., Shozo K., Masakatsu M. (2017), Verification of Design Method of Pipeline Crossing Fault with Earthquake Resistant Ductile Iron Pipe using Large-scale Split-box Test, The 10th JWWA/WRF/CTWWA Water System Seismic Conference, Tainan, Taiwan.